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Objective

SUMMARY,

Ir
c

.

The objecnve Is to explicate a methodology to assess the need for, and to assist in the development, implementation,

and evaluation of alternative instructional treatments especially applieablc o self-paced, computcr-mumged

instructional settings.

Background/Rationale

If a computer:managed instructional program were divided into alternative instruetional modules or lessons, the

instructional manager would want its use optimized to lead studcngfrom lesson to lesson as efficiently as possible. The

manager would want the various lesson alternatives selected to be those that are aost appropriate to the particular

characteristics of individual learners. Whereas_some lesson approaches might be acceptable to most learners, different

approaches might be better for other learners. Methods exist for deciding which lesson approaches* are most appropriate

for which learners. These methods need to be exPlicated in a trimmer that can be used by Air Force instructional .

managers, especially those working in self-paced, computer-managed instructional settings.

Approach ,

A suitable methodology should be able (a) to identify lesson approaches suitable for most students and the student

chyacteristies thaseem to be related to leszon success, (b) to suggest more-suitable instructional approaches for students

who have different characteristics, and (c) to implement and evaluate the effectiveness of the alternative approaches.

Accordingly, emphasis is placed on how to identify and test interactive relations between .individual-learner

characteristics and instructional conditions or treatments:Considerable attention is devoted to,problems 4tneasure mem

that are basic to instructional diagnosis and evaluation, as well as to the development of measures of learner aptitudes

and achievement. Finally, statistical methods are outlined for use in the design and analysis of experiments to evaluate

alternative instructional treatments.

Specifics

ie.
., The report assumes that users are familiar with basic statistical concepts and the rudiments of experimental design.

References are cited for those users who may wish to review statistical and measurement concepts, because some
..

understanding is required of measures of central tendency, variance about a central valde, and relations between such

.. measures. .

c,

S.

The first of three sections deals with basic concepts of evaluation of alternative instructional treatments. It includes

a generalized model for evaluation, an example of an instructional evaluation, and techniques for planning experiments

and evaluating treatments. The second section deals with tests and test items in a criterion-referenced setting. It includes

concepts of Ineasurement using such test items and techniques for selecting and evaluating them. The third section deals

with the design and evaluation of ahernative instructional treatments. It includes the methodology required to assess

the need for an alternative instructional treatment, then to develop, implement, and ev'aluate it.

Five appendixes provide technical details and an example of the overall methodology using specific data. They cover

the following topics: (a) evaluation of candidate tst items, (b) development bf criterion-refcrenced tests using cross-

sectional samples, (c) regression analysis as applied to the development ofexperimental treatments, (d) analysis of learner

characteristics in the design of treatments, and (e) commonly encountered statistical concepts.

a
,

e
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ConeluidondRecolumendations

A methodology has been explicated to assist in the development, implementation, and evaluation of alternative
instntetional treatments. Also, the conceptual framework and overall methodology needed for the improvement of test
items and tests, and for the development of treatments ih typical Air Force critde-referenced settings, have been
presented. These methods should be used Im managers of Air Force instructional programs, especially in self-paced,
computer-managed instmetional settings, and to this end this report should provide useful guidance.

I

7

I.

0-



' PREFACE

Tice purpose of this.report is tO provide guidance in the develop-'

ment and evaluation of alternative approaches that hold promise of

improving instructional effectiveness. The.main focus of the report is

on how to identify and test interactive relationships between indivi-

dual differences among learners and instructional conditions or treat-

ments.

It is assumed throughout this report that tile instructional

setting permits individualized management of instrUction. Management

support for experiMentation with instructional activities also is

assumed. Although compUter assistance for tnstruction is not a

.requisite, many procedures and recommendations in the report wouldbe

enhanced if instruction was computer-managed or computer-assisteb.

Many of the examples used in this report aee based on hypothetical

test item response data generated to provide an illustratior that is

internally cobsistent. Other concrete exaMples are drawn from analyses

of the Precision Measuning Equipment (PME) course taught at the Lowry

Technical Training Center (LTTC) at-Lowry AFB.

The report directs tonSiderable attention to proble of measare-

ment that are basic to diagnosis and evaluation: A major premisd is .

that there kt no acceptable substitute for careful empirical experimen-

tation -- often an approach must be tried several times befoie evidence

sufficient for credible evaluation is available. Underlying this

conviction is commitment to principles of measurement because defining

learner aptitudes and quantifying the effects of instruction both.

require dependable measurement. Thus, a portion of this.report

concerns the development of Measures of learner aptitudes (e.g., the

learner's repertoire of knowledge, skills, and abilities) as a basis

for assignnent to instructional treatment and also measures of learner

achievement.as a function of instructional treatment. The importance

of homogeneity among items that comprise a test of achievement is_

emphasized because a reliable test cannot be composed of nonhomogeneous

Items nor can an unreliable test be useful for either diagnosis or

evaluation.

The report assumes that readers a1re familiar with, and have ready

access to, the many useful sugsestions contained in Air Force Manual

(AFM) 50-2, Interservice Procegures for Instructional Systems Develop:

ment (ISD). This report is compatible with the ISD model and refers to

TITor supplemental guidance. -

Finally, this report assumes Eit users are familiar with basic

'statistical concePts and the rudiments of experimental design. The

discussions and examples in the report require at least some under-

standing of measures of.central tendency, variance about a central

value, and association between measures.
References are cited for

those users who may wish to review statistical ahd measuPement concepts.

1
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I BASIC CONCEPTS AND PRIORITIES

A Generalized Model for Evaluation

11.

, The causal directions of selected influences upon performance in a

training course are'illustrated in Figure 1. This figure seeks to \

.
represent the increasingly rich mixture of factors that influence .

performance 6n successive lessonsl withima course and in,a.job

assignment following course complettom.

.

9

Figure 1 intentiOnally ignores the broad class of other influences

' defined by the environment\within which instruction occurs. The boxes

labelled as "letsons" in Ffgure I represent lesson content, methods of,

..instruction used, and the immediate environmental.setting in which

fnstruction occurs. Other influencds.on performance may be important. .

but they are implied'rather than shown.

. I
I -.

Figure I may be viewed as a 'general Model for prediction of

periormance. For example, if mpbrformance" iR Lesson 1 is the variable

, to be predicted, the primary predict& variables are those that defPle

learner aptitudes and experiences prior to exposure to Lesson,l. ,

.("Aptitude," as used here, follows the broad definition by Cronbach and

Snow (1977); that is, aptitude is "any characteristic of a person that

/ precasts his probability of success under a.given treatment.") The

content, methods, and setting of instruction in Lesson 1 define the '

"treatmerie variables fnIthe equation; .

Influences on performance accumulate and mergewith each succes-

sive lesson in the 'course, as the horizontal arrows between eagh lesson

and the leftAand box, "cumulative.proficiency, are intended to'show.'

Thus,.the predictio, equation for each tuccessive lesson is incre-

mentally more comPlex than the preceding one. By the final lesson in

the course -- Lesson n in Figure 1 =- the predictor variables have been

augmented.by the CUMulative effects of all instructional experiences in

the course to that point.

1
.,_( . (

The term, "lesson," ts used thro6ghout this report,t6 denote any
. .

"segment, unit, or block of instruction from which progress to the next5

segment cannot occur without successful performance on a mastery test.

"'Successful performance" ig defined by the criterion level specified

for each test of achievement in Tiesson" content.

L;
0

. 1.
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PERFORMANCE IN JOB ABSIGNMENT FOLLOWING TRAINING

..,
...,

,

\ .
r -

APTITUDES AND CXPERIENCE FOLLOWING COASE COMPLETION\ .

CUMMULATIVE

PROFICIENCY

IN CONTENT

OF THE COURSE

LESSON n

c

LESSON n - 1

A

I

i

LESSON 2

I

.-

LESSON 1-0--
.

APTITUDES AND EXPERIENCE PRIOR TO COURSE ENROLLMENT

H43-423582-1

FIGURE 1 RELATIONSHIPS AMONG APTITUDES, EXPERIENCE,
LESSON ACHIEVEMENT, COURSE ACHIEVEMENT,
AND SUBSEQUENT JOB PERFORMANCE
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1

The aptitudes that describe a person after completion of a course

include the cumulative Changes acqufred during the course (e.g., new

skills, increased knowledge, changed attitudes) as well as the surviv-

ing characteristics from among those that described the person at the

beginning ef the course. The "new" profile of aptitudes also will

reflect influences that were external to the environment of the.course,

as noted earlier. All of the differences.between,an aptitude profile

- at the beginning and the end of a course cannot be attributed to

partidpation in the course.

Whatever the sources of influence on the aptitude profile, the

"new", aptitude profile then becomes the source of predictor variables

for on-job performance, as shown at the top of Figure 1.

Variables in the Evaluation Model

The variables involved in evaluating the effects of instructional

content and organization on trainee performanCe may be categorized in

various waye. Table 1 shows a classification tuitable for evaluating

technical triining in a computer-managed instructional setting.

Table I

VARIABLES FOR pREDICTION OF TRAINEE PERFORMANCE

IN AlESSON OR SEGMENT OF INSTRUCTION

Variables
Remarks

Personal Descriptors

Preassessment Battery Scores

. Other descriptors

- Sex
- Age (date of birth)

- Service branch
- Length of service

7 Air Force Specialty Code

- Prior duty assessment
- Etc.

Variables in this class are constant

or fixed for each trainee throughout

the duration of a course.

9
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Table 1 (concluded)

Vari abl es

Treatment Variables .

Shift assignment
Instructor assignment

Instructional group size
Date oflirst enrollment
Instructional materials and
procedures
- Review materials
- Practice materials
- Self-check test iteMs
- Individual coaching
- Etc.

. .

Achievement Varilples

Achievement in prior lessons
- Measured Vme to criterion
_CUM) -

- Number of attempts to
-aiterion (NATT)

Actlievement in current lesson
First attempt measured time

- (MTM)
- First attempt score (LSC)
- Measured time to criterion

(LTM)

- Number of attempts to
criterion (NWT)

Remarks

These variables are sometimes called
"process variables." Some variables in
this class will be constant throughout
the duration of a cpurse. Other vari-
ables may change with each lessqn.
Comparing trainee performance'under
different instruqtional arrangements or
"treatments" is the essence of
evaluation of instruction.

Achievement indicators from lessons
preceding the one being evaluated are
predictor variables.

MTM and LSC scores are "within lesson"
predictors of lesson 'achievement as
indexed by LTM and NATT scores.

LTM and NATT may he used as outcome
measures ("dependent variables")
singly or in combination; important.
to control for LSC and MTM because MTM
and LIM are.not independent and LSC
predicts both LTM and.NATT.

,Atypottietical Example of Instructional Evaluation

Consider an evaluation-to assets the effects'- of certain revisions
in a lesson. For example, assume that review of trainee performance
suggested that performance might be improved in a segment of instruc-
tion if several practice exercises with self-check test items were
provided. Suppose; liurther, that two groups of trainees were given
opposing guidance to influence the effort tpent by trainees on the
exercites: one random half of trainees was strongly urged to attempt
all the practice exercises anxl:told not to attempt the criterion test
before succeeding on all exercises, and the other random half of
trainees was mildly endouraged to go through the practice exercises but
also urged to attempt the criterion test as soon as possible.

10
15



As'suile, for the illustration, that the guidance given trainees did

affect the amount of attention giveh to practice exercises. Strong

urging to attend to the practice exercises led most trainees so urged

to work the practice exercises whereas only mild encouragement led most

of the.remaining trainees.to skip through the practice exercises.

Suppose the results of the experiment were portrayed as in Figure

2. Here, the two groups (exercises "urged" or "not urged") are further

divided into high skill and low skill, where "skill" might be an apti-

tude measure such as reading comprehension or numerical reasoning. The

hypothetical resultssuggest that the exercises did'not have much

effect on the high-skill group, as the average number of attempts was

about the same for both conditions. For the low-skill group, working

the exercises seemed to lower the average number of attempts.

'a

Many

Few

Low Skill High Skill

TRAINEE APTITUDE

HA-423582-2

FIGURE 2 EFrECTS OF COMPLETING PRACTI'CE 'EXERCISES

ON NUMBER OF ATTEMPTS TO CRITERION
ACCORDING TO TRAINEE APTITUDE



Results such as those in Figure 2'would Provide evidence for an
aptitude-by-treatment interaction (ATI) since the effects of the treat-
ment depend on aptitude. Other, more complicated, outcomes are
possible depending on how many variables are considered in the experi-
ment. Findings such as-these-couid-lead to a reviSed instructional
strategy:

1. More practice exercises Would be addod to the,lesson.

2. Arl trainees with lower-than-average scoPeS on basic skill5
measures in the,Preassessment Battery would be stronglxurged
(perhaps required) to complete all the practice exercises
before attempting the crtterion test.

Which Should Come First -- Good Measures or Good Experiments?

The above heading does not pose a real choice. Although it is
possible to have good meisONs and poor experiments, it is not Ossible
to have good experiments without good measures. 0

The preceding paragraphs described the results of a hypothetical
experiment on the effects of practice exercises. The findings from
that experiment were fairly unambiguous and suggested useful implica-
tion& for changing instructional strategy. However, the findings from
the hypothetical eiperiment assumed the following:

1. The contents of the practice exercises and the criterion test
. were relevant,to the instructional content.

The Measures of*Performance were dependable.

3. The measures obtained in the instruction were related to
performance in a job issignnent.

Experiments that modify training approaches to achieve a better
fit between instiliction and trainee.aptitude are unlikely to lead to
trustworthy conclusions if the data from the experNents 'are not also
trustworthy.

Figure 3 presents a sequence of evaluation questions and decision
options for an assessment .of curriculun content, means for measuring
training'and on-job performance, and the relationship between training
performance and on-job performance. The questions and decision paths
shown in. Figure 3 portray a diagnostic evaluation that should precede
efforts to improve the payoff from instruction through adaptations of
instructional treatments to learner aptitudes.

The arguments for performing the diagnostic steps in Figure 3
before undertaking experiments with alternative instructional treat-
ments are discussed in the following paragraphs-.- These arguments are
consistent with the position maintained throughout the gnterservice

12
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REVIEW TRAINING'
CURRICULUM AND TRAINING
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FIGURE 3 STEPS IN EVALUATING CURRICULUM CONTENT AND ADEQUACY

OF PERFORMANCE MEASURES
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Procedures for Instructional Systems Development (AFM 50-2)% The
foundation of tbe ISD modeT is the dependence of instructional content
and procedures on the function and task requirements of jobs. Job
relevance is a primary criterion for evaluating instruction.

Thii report supports the fundamental position of the ISD. This
report also emphasizes that effective diagnostic evaluation of existing
instructional Otgrams depends on relexpt, reliable, and comprehensive
measurement of these iirograms. As every navigator knows, plotting a
course means knowing the preient-position as well as the intended
destination. The following discussion-of the procedures illustrated in
Figure 3 concern the importance of appraising the present program
before proceeding in new directions.

The essential pufpose of training is to improve on-job per-
formance. Specific instruction may be narrow (deal with only
one or.a few tasks or functions required by a job) or broad
(address all tasks and functions that define a job). Whatever
the coveraie, the content of instruction is directed toward
qualities that a successful job performer must'possess. These
qualities may be specific or generalized knowledge, a variety
of skills, or attitudes that influence behavior on the job.
Regardless_ of focus, the content of instruction is based on
analyses of functional requirements of the job. The ultimate
proof of instructional effectiveness in training is improved
performance in the job. The sequence shown in Figlire 3 assumes
that the curriculum and plan of instruction.grew from an
analysis of job requirements.

-1)s Every instructional objective important enough to be stated,
'implies an associated process for reaching that objective and
means for measurtng the degree to which the objective has been
reached. ThisAssertion is meant to emphasize two complemen-
tary points:

1. Instructional objectives and instructionS) processes should
reinforce one another. For every explicit objective, there
should be an identifiable process for achieving it.
Funthermore, every instructional process or activity that
consumes staff or trainee energy should be justified by an
identifiable objective;

2. Objectives imply measurement. Without measurement relevant
to an objective, there is no dependable way to estimate the
degree to which the objective has been reached.

Measurements of student performance during a course of instruc-
tion must.be acceptabTy. reliable (consistent, dependable,
accurate) and full re resentative of-the content of instruc-
tion i.e., possess curricu ar or content va idity central
purpose of.this report is to suggest ways to devise jnstruc-
,tional treatments suited.to learner characteristics. This is

14
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analogous to a medical prescription basea on current wmptoms
0

and other chaisacteristics of the patient. Just as a respon-

sible medical prescription requires dependable measures. of the

state of the patient relative to a desired healthy state, so

too does an instructional prescription require dependable

measures-ofthe learndt's state relative to the desired one.

Training achievement measures are the analogs of medical

measures of healthfulness. Evaluation demands the best,

possible measures of status so that changes in status can be

assessed accurately.'

The saquence of evaluation questions 'and decision options shbwn in

Figure 3 Concerns the content of training, the appropriateness and

dependability of training performance measurel, and the relationship of

training performance to performance on the job. following training.

Question 1'

Questtowl in Figure 3 concerns the content validity.of measures

,of student achievement. The essefitial-tssue-is whether or not the

performance measures provide a fair sample of the content of in-steuc-

------ Von.. If material is being taught but its mastery is not being tested

any way, then either the tests should be expanded to cover the

material or the appropriateness of the material should be reconsidered.

Question 2

'Question 2 concerns the-reliability of meatures of achievement.

7wo causes of test unreliability may tie-detected. One cause is that

the items making up a test are not homogeneous; that is, they do not

all measure some aspect of the same attrfbute. The second cause is

that a test is not long enough.

Summtila scores from nonhomogeneous items to a total test score can

lead to confusion rather than to clarity. The meaning of test scores

must be clear,if achievement tests are to be a trustwort0 source of

information for decisions about instructional treatments adapted to

trainee aptitudes. ,

A

Consider, for example, a brief test composed of five items in

which Items A and B are homogeneous with one another, and Items C, D,

and E are homogeneous with one another but are not homogeneous with

with Items A and B. Imagine, further, that criterion performance has

been defined simply as "passingthree or more items." With five items,

there are 16 different response patterns that will yjeld a"total score

of three or more. Atone extreme, a trainee could fail both items A'

and B but pass items C, D, and E to meet the minimum criterion. At the

other extreme, a,trainee could pass both-items kand B but fail any two

of items C, D, and E'and alSo meet the criterion as defined: if crite-

rion tests are composed of subsets of items that are not homogeneous,

then criterion performance should be defined by minimum performance on

1 5
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each subset. In the above eAppple, a better specification of criterion
perfonmence would be to "pass either A or B or both and pass any two or
more of C, D, and E."

Another factor that-affects test reliability is the number of
items In the test. Generally speaking, the longer the test the more
reliable it will be. Of course, in an operational setting such as Air.
Force training, tests cannot always be long enough to obtain excellent
rel4ability4- some bilance must be maintained between testing time and
instructionaT time.

there ii no single answer to the question,:How long is long
enough? Any perfornande tett is-a sample of items from a much larger
possible set of items to measure a category or "doinain" of behavior.
Small samples mean large sampling error. If decisions based on. test
performance are important, then the sample of items-that make up the
test shbuld be large enough to provide some redundancy in measurement
as a means.for reducing sampling error. If decisions based on test
performance,are not of major importanee, then a few items may suffice.
Decisions about'test length call for assessing the consequences of a
wrong decision based on test performance..

'de

Question 3 ,
The third question in Figure 3 concerns the predictive validity of

training; that is, the extent to which success in training is associ-
ated with satisfactory performance on the job.

>

'- The relationships between training performance and job performance
are imperfect for a variety of reasons -- the complexity of human,
behavior, the low reliability of many measures of behavior, failure to
measure certain influences on traipng performance or job performance,
and so on. In practice, it is rare to find correlations between train-
ing perfoilmance and job performance that exceed .35 or so, thus imply- ,

ing that only about 1C1-20% of variance in measures of job performance
can be attributed to meaSures of performance in training.

Even discounting for the problem of measurement and the complexity
of the relationship, the ultimate justification'for training is to
improve performance on the job. At the very least, the relationship
betWeen.a measure of training performance and.one of performance on the
job should be positive and greater 'than zero -- training performance
should predict job performance better than chance.

N\NN Question 4
,

e fourth question deals with the adequacy of measures of perfor-
mance oiNt,he job. As is shown elsewhere in this report, the upper
limit of a asure of association between two measures is defined by
the least reltable measure. As a rule, it is easier to achieve reli-
ability in measu es of training performance than in measures of perfor-
mance on the jobr.-` hen measures of association between training and

16



on-job performance are low and it has' been established that the train-

ingdMeasures are as-reliable as practical considerations warrant, the

iiTie-to search for improvement is in the measures of oh-job

performance. This question directs attention to that source.

Improving measures of job performance may go beyond the recognized

responsibilities of a course designer or manager of instruction, but

people responsible for training design and managenent clearly have

interest in the problem. Measures of perforMance on the job, following

training, are essential to functiOns designated in the ISO model as

"exterraT evaluation. Clearly, training personnel, course designers,:-

and managers of instruction musthelp address the issue. Relationships

between external and internal evaluation, as the functions are defined

in the ISO model, a diScuSsed in more detail in Section III of this

report.

Question 5,.

Question 5 in Figure 3 is Question 3 asked again following efforts

to improve measures of on-job performance. If inability to predict

onnjob performance acceptably well was a function of inadequacies'in

the measures of on-job performance, then improvements in the on-job

measures may be required before proceeding with ATI studieS to increase

the effectiveness of training. This possibility is denoted by the

"yes" path from Question 5 to. the bbx, "proceed with ATI itudies."

It also is possible that inadequacies in the training curriculum

.will be revealed only after the issue of the predictive 'validity of

trailling performance has been pursued thoroughly. This possibility is

identified by the "no" path leading from Question 5.

Question 6

As noted previously, it is possible that
inconsistencies between a

training curriculum and the requirements of a job will become evident

wfly.after_completion of a serious effort to improve measures and

affirm relationships between them. Question 6 deals with the match

between a training curriculum and the requirements of a job. The

question directs the curriculum designers to reconsider the curriculum

content in light of revised analyses of job requirements. If curricu-

lum revision is necessary, then measures oftraining performance will

need to be revised also.

The ISD model (AFM 50-2) provides methods for job and,task analysis

and for translating findings from such analyses into specifications for

instruction.

Box 7

Box 7 in Figure 3 is the "court of last resort" -- further

research is necessary. If the curriculum fits the job, the training

performance measures fit the curriculum, the measures of job

17



performance ire as satisfactory as one can make them, but training
performance still does not predict job performance, then other reasons
for lack of relationship must be sought. If this decision is reached,
then the most likely problem is that some unmeasUred environmental
variables affecting job-performance are operating. Examples could
include the workplace layout, mode and quality'of supervision,
fluctuations in work demands, and so on..

A.iteratly, Box 7 invites the reciprocal of Question 6 -- are all
job requirements represented in the curriculum? If some important
aspects of the job are not represented in the curriculum, then training
performance cannot be expected to predict job performance. However, if
important aipects of the job are not represented tn the curriculum
'being evaluated, then either that'curriculum should be revised to
accommodate additional job requirem6nts or supplementary curricula
should be developed.

'Planned Experiments with Alternative Instructional Treatments .

Systematic instructional research and evaluation as part of an
operatingtraining.program implies-a recurring cycle af plinned trials
with alternative instructiOnal approaches. Figure 4 illustrates a
generalized sequence of steps in sucCa program of research and evalua-
tion. The focus is on relationships among classifications of trainees
and of instructional treatments. The search is a continuing one for
dependable generalizations about the effectiveness of instructional
approaches for trainees characterized by Certain patterlis of aptitudes
and prior performance.

Underlying the formulation shown in Figlire 4 is the expectation
that dependable generalizations are more iikely fromtrepeated sequences
of experiments directed toward questions of limited scope than from
,complex experiments directed toward broad questions. This is not meant
to discourage efforts to.strive for crucial experiments but to recog-
nize that modest findings are more likely than dramatic ones even with
the most carefully planned instructional experiment.

The Simple Inter-Group Comparison

In the classic experiment, the focus is on the effects that
independent variables have on dependent variables. The independent
variables that the experimenter can manipulate are the'experimental
variables. The formal research proposition is in "if-then" terms --
"if X.under such-and-such conditions, then Y.will be observed." In

such a formulation, "X" defines the ekperimental variable, "such-and-

such conditions" define the circumstances of the experiment (including
the characterittics of the subjects of the experiment), and "0 defines
the meaSure of outcome or the dependent variable. The essence of
experimentation is control over the variables.involved and the
conditions under which the variables will-be observed.
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Consider first a straightforward'experiment
in which the purposeis to assess the effectiveness of a "new" approach for teaching.some

segment'of a training curriculum. This could be done wfthin thecontext of normal instruction.by assigning one randomly selected groupof current trainees to the "new" method while the other randomly
selected group of trainees.experienced the "old" or current method.
Outcome measures of interest (e.g., measured time to criterion) would .be obtained routinely and the,two distributions of scores -- those from
the "new method" group and piose from thE "old method" grbup -- couldbe compared'to see if the-difference,between the two methods was large
enough to be attributed to the method of-instruction rather than to
chance:.

47 ;

Even this straightfoNard experiment is not quite so simple at the
description makes it'appear. For example, the number of trainees AU
the appropriate stage of initruction at any one time might hot'be large
enough to-provide two samplesiof sufficient'size.to allow an adequate
test Bf the two methods. In this case, samples of adequate size could,be accumulated over several successive classes; literal*, a small-
sample experiment would be replicated several times, thus posing the
additienal .problem of whether,data should be pooled over cohorts for a
single analysis or whether probabilities should be ,combined over
analyses of several replications.

Another domplication might arise Minstruction Were organi2ed for.
administrative purposes into shifis or periods.defined hy time of day.
To adjust to this, one could makerandom assignment of trainees to..
methods within each.shift so that method effects would not become.
entangled with shift effects. But splitting each shift might make it
difficult to insulate trainees experiencing one method from those
experiencing the other; a systematidally balanced schedule might be
worked out so that each .shift experienced each method over several
classes of trajnees. Again, some problems of analysis could arise,

-especially if the characteristics of trainees were to vary markedly'
from one incoming class to another.

For convenience of illustration, assume that complications in
implementini the alternate methods experiment arg worked out and two
rival distributions of outcome scores are generated under Conditions
that are as Close to-identical as can be managed. Comparing ihe two
score distributions, tO decide whether one method was superior, still
addresses only the question of which method is best on the average.

Many differences among trainees, both within and between groups,may be substantial -- prior experiences, performancp on earlier
segments.of instruction, skill in reading, proficiency with tools, and
so on. Randomization of assignment to treatment protects against bias
by makingthe chances of "unuSual" performance equally likely in,eithergroup. However, the siMple score distribution comparison cannot
address important questions about how individual differences among
trainees are relateeto the experimental treatments and influence the
outcome measures obtained. Even so, the simple score distribution

20
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/comparison' betweery.subjects from the same trainee population assiEined
at random to rival approaches Is a legitimate approach when the
research-or evalliation questiOn is no More than "whichtreatment is'
best'on the average.". Comparisons need notbé restricted to two
groups; there-mo be as many comparison groups as the 'credible altern'a-

... tives, available subjects, and the logiStics of experithentation will

0

'permit..

Analysis of Variance and Multiple Regression Analysis Models for
Instructional_ Treatment Experiments ,

Designs for experiments cannot be discussed without also consi-
dering4some statistical analysis igsues. that are related closely to
experimental design decisions. This is particularly the case*when an

%objective of instructional-research is to find and establish dependable
generalizations, about interactions< between the characterptics of
trainees and the characteristics of instructional treatments.

Data from instructional, treatment experiments designed to "pick a
>winner" -- that is, experiments designed to-find the treatment whose
average effect- is greatest among rival treatments -- are often
subjected to, the statistical. technique called analy,sis of variance

.(ANOVA).. When the independent variables that define the 'conditions of. .

the experiment are categorical and also are functionally Independent of .'
one another (i.e.', are not-correlated), then ANOVA May-be the most
appropriate technique for the statistidal. analysis.

Briefly, ANOVA provides a means fOr testing whether themean
differences on the dependent variable measure between two or more .

independent groups are sufficiently large to be considered nonchance or
"statistically significant." This test of statistical ignificance
makes use of ratios of variances, hence the name- "analysis of vari-
.ance.". (The variance is.an index of spread or dispersion of scores
around the mean or arithmetic- aver* of a distri.bution of scores-)
For iXample, in an eiperiment somparing ;three methods of instruction to
one another, ANOVA may be used to,provide.an overall test of the
differences among the three means on the criterion test. The key
statistic., or F-ratio, is the ratio of th,e "between groups"-Variance to
the "within groups" 'variance. When the F-ratio exceedslian dxpected
value by a .sufficient amount, the conclusion is that the groups are
different. 'Literally, thg method-estimates the prolpbility that a

.. predictor iari able (such as the method of i nstructi on), d yi el d
results diherent from simple random selection. Yti

The analysis of variance technique, when extended :::Itwo-way ,

.classifications or higher, permits identificaiion.of interactions
between and among variables. To illustrate, assume-that \a simple
Treatment A vs. TreatMent B experimentwas set up so that participat-
ing trainees could be differehtiated on more than the site dimension
of "member of the A'(or B), group." For example, suppose hat the
training course is one' to which persons from two different\ Air Force
Sptecialty Code .(AFSC) backgrounds are assigned. Assume that each AFSC

4
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indexes a quitkl-i-tatively different expekence backgroundlso that
developing a training curriculum suitable for both simultaneously has
led to segments of the.curriculum being better suited to one background
than to the other The questf9n that justifies an experiment, then, is
whether a reVised training segment (Treatment B) is better suited than
the current material .(Treatment A) for those who have had difficulty
with Treament A.

Table 2 ,shows a twoLway experimental design in which treatment (A
or B) is crossed with a trainee characteristic (AFSC 1 or AFSC 2).
Note that there are now nine score distributions,that, collectively,
describe the results of the experiment -- four sets.of AFSC within
Treatment scores, two sets of Treatment scores over AFSC, two sets of
AFSC,scores over 'Treatment, and one-overall or grand distribution of
scores. .'

The notation used in Table 2 is conventional for denoting means of
groups.. Implied by the notationLis adistribution of several scores in
each cel 1 that can be summed in rFaw form, to yi el d row totals, col umn
total s; and an overall total . It also is implied that the four cell s
in the bay of the table denote independent proportions of the total
sample (i.e., NjA.+ N-1B +NBA + N2B = NT). Two-way and higher-order .

ANOVAs are computed more easily and interpreted more readily if
subsamplei are equal in 'size to one another. In tact, two-way (and

'higher-Order) classifications for ANOVA become quite untidy when
sub-samples are not equal or, at worst, not proportional. Thus, in the
example illustrated by Table 2, equal7sized sub-samples are assumed:2

Figure 5 displays-a -grapti-of imaginary retults that would be highly
faiforable to resolving the problem that stimulated the experiment; that
is, to develop a revised training segment that is better suited to those
who have had difficulty with the present material. Figure 5 shows an .

interaction between trainee "aptitude" (represented by prior experience
and training underlying the two AFSC categorieS) and "treatment." The
symbols' used in Figure 5 correspond to the notation for cell, row, and

, 4

"The actual composition of a trainee cohort "population" is unlikely
to. provide the convenience of equal numbers on some desired classi-
fccation variable, sueh as AFSC in the Table 2 example. Random
samples of equal size cari bel,draWn to match the size of the smallest
cross-classification in the cdhort population or arky acceptable

. minimum size less than the smallest sub-set. If it is more'conye-
nient administratively to draw the samples for analYsis after the

, experimental- data have been collected, equal sample, sizes for
analysis can-Be created by, sampling the data set. It the latter
procedure' is followed, one must be sure that "group size" is irrel e-
vant"to the experimental treatment.. If treatment invOlves some
considerations of group size, then gFoups should be constructed in
advance of' the,experiment so that group size is an explicit factor in
the experimtal design.
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Table 2.

SCHEMATIC OF TWO-WAY CLASSIFICATION EXPERIMENTAL .

- DESIGN DENOTING GROUP MEANS

.Trainee
AFSC

Treatment ,

'TotalA --- B
,

1 R
lA

R
ili

R
1.

2 R2A
R
213 R2 .

Trit a 1 R
.A

R
.13

R
T

column means shown in Table 2. A reasonable policy decision, given the

evidence summarized in Figure 5, would be to use Treatment A for

'trainees with AFSC 1 background and use Treatment B for trainees with

AFSC 2 background'or, if that were not feasible, to replace Treatment A

,with Treatment B or all trainees. 1

High

t
-I( l

R

Low

-
-

R1A 0

R1B 0

§

Treatment B 0 R2B
,

-

AFSC AFSC

1
2

SUR ROGATE FOR APTITUDE

High

RB

RA

Low

HA-423583-5

FIGURE 5 IMAGINARY RESULTS OF ALTERNATIVE TREATMENT

EXPERIMENT USING AFSC AS A SURROGATE

FOR TRAINEE APTITUDE
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Figure 5 illustrates that effects for interaction between treat-
ment and aptitude may be present ahd highly visible (i.e., significant
in a statistical sense) with the AVerage difference,between treatments
being of no consequence. More specifically,Ahe performance difference
between Treatment A and Treatment B, averaged.over all subjects, is
small; the graph is intended to imply that the average difference
between treatments is too small to matter. That "no difference" result
is the only one that would have been detected jn a one-way ANOVA. When
the aptitude factor (represented by AFSC) is introduced in a two-way
ANOVA, however, the important aptitude-by-treatment interaction becomes
evident.

The ANOVA is well-suited to experiments in which the experimenter
controls the independent variablessand when the independent variables
are functionally independent categories. The ANOVA ceases to be the
"best technique, and may be completely inappropriate, as one or more of
the following conditions arise:

1. When independent variables are functionilly related to one
another..

2. When the independent variable (in a one-way design) is
continuous rather than categorical or when the independent
variables (in a two-way or higher order design) are a mixture
of continuous and categorical variables.

3. When cell frequencies are unequal and also disproportionate.

4. When four ortore independent variables are used in the
classification of treatment and subjects.

---

As a,general rule, multiple regression analysis is better suited
tiaki is ,ANOVA to data from instructional treatment experiments. This
fOlOwS primarily from the lack of functional independence among indi-
iidual, differences variables used to represent trainee aptitudes.
Personal characteristics (personality traits, abilities, skills, educa-
tional levels, etc.) typically are not independent of one another.
There'are reasons beyond independence among variables that generally
favor regression analysis over-ANOVA. Figure 6 provides a rough guide
for use in choosing between ANOVA.and regression analysis when planning
an instructional treatment experiment.3

An excerWrom.McNemar's no-nonsense discussion of anilyses
involving classification or predictor variables that are not inde-
pendent of one anoiher provides an appropriate summary of the Oroblem
of choosing the appropriate statistical technique.

3
Both ANOVA,and regression analysis belong to the.class that
statisticians call "the general linear model." ANOVA can be shown
mathematically to be subsumed under regression analysis.
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MEASUREMENT SCALES
FOR INDEPENDENT

VARIABLES

All are
categorical

AnOCIATION
AMONG INDEPENDENT

VARIABLES

Functional
Independence

NUMBER
OF INDEPENDENT

VARIABLES

3 or less

EQUALITY
PF SAMPLE

SIZES

Equal

iWzrIO

Some are continuous

iVariables on continuous scales can br, grouped
into categories (e.g., high-low) but this
wastes.infoiation

Some association is probable or certain

{There is no way to compromise on this point.
If independenf.variables used in an experiment
are correlated with one another, ANOVA
cannot handle the problem.

4 or more

There is no thJoreticaI limit cn the number
of variables in ANOVA. However; 3-way
and higher-order interactions are very hard
to interpret and total sample size requirements
expand with each new variable added to the
classification.

Unequal

EFER ANALYSIS OF VARIANCE

Unequal sample sizes are OK in 1-warANOVA
but require complex adjustments in higher-order
classifications that make significance testing uncertain.

HA-423582-6

Fl URE 6 DECISION GUIDE FOR CHOOSING BETWEEN ANALYSIS OF VARIANCE

AND MULTIPLE REGRESSION ANALYSIS

,
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"... the factorial design approach [the conventional ANOVA
arrangement of variables by levels] is inferior to the multiple
regression technique as amethod for testing the statistical
significance of factors that aee characteristics-of individuals.
The analysis of variance of the data obtained by factorial
experiments provides tests as to whether factors have produced
variation. Multiple,regrestion, in contrast, has traditionally
been associated with analyzing natural (not laboratory.produced)
variation into sources with no TiVITFeMent that the sources be
uncorrelated with one another" (McNemar, 1969, p. 453).

Some Suggestions for Do-It-Yourself Regression Analyses

Multiple regression analysis is a statistical method for analyzing
the collective and unique contributions of two or more independent
vari.ables, X1, X2, . . . Xk, to the variation of a dependent variable,
Y. The method is oblivious to the analyst's motives -- it can be'used
in exploratory "data snooping" when one is trying to get a better idea
of what goes with what,and it can be used to help test carefully
formulated if-then propositions about what one expects to observe under
particular conditions.

Appendix C contains an overview of regression analysis, the coding
of categorical variables (such as instructional treatments) for use in
regression analysis, and the creation of variables to represent apti-
tude-treatment interactions in regression analysis.

The ,suggestions4that follow are intended to show how multiple
regression analysisfthay be used for either exploratory or explanatory
purposes. Section'III of this report is directed toward problems of
designing and evaluiting alternative instructional treatments. There-
fore, in this discussion, independent variables (sometimes called
predictors) and a depdndent variable (sometimes called the criterion)
will be u,sed but operational meanings will not be given to each X and Y.

Suggestion 1: Start with a problem whose solution you think you
could interpret.

This suggestion is another way of saying that the variables used
in the analysis should be ones that make conceptual sense to you.
Whatever statistical findings are obtained, sooner or later those find-
ings must be interpreted in words to so4one who has less understanding
of the analysis than you do.

Suggestion 2: Lock first at thepieces before trying to put hem
toget er.

The raw ingredients are sets of scores or values that describe
people. The raw data matrix has N rows (one row for each person or
case) and k columns (one column for each variable). Each variable or
column in the data matrix can be described by the number of points (N),
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the range of values, its central value (mean), its dispersion (standard

deviation), and its shape (skewed or normal, flat or peaked, unimodal

or multimodal).

Each pair of columns or variables can be correlated over Wcases;
thus, each pair of variables also can be described by the number of

paired points (N) and the distributional characteristics of the scatter

of points orka plane defined by perpendicular -axes. This scatter also-

can be described by the relationship or correlation between the two

sets of paired values.

The correlation coefficients (variously called zero-order correla-
tions, simple correlations, and bivariate correlations) are the basic
ingredients of multiple regression analysis. If thdre are k variables,

(kz - k)/2 different correlation coefficients are computed to describe
.all the.two-way relationships represented in the N x k matrix of raw

data.

Looking first at each of the two-way scattergrams resulting from
the candidate variables will help answer some questions that are impor-

tant.

1. Are the two-wm relationships generally linear? If some

relationships appear curvilinear, could they be made more
nearly linear by some transformation in the scale of one of

the variables?

Some apparent nonlinearity in two-way scatters may be due to

the influence of a third variable; interaction terms added to

the regression equation may be helpful. Other curvilinear

relationships may be dealt with by transforming a scale

through the use of logarithms or exponents. The SPSS manual

(see "Special Topics in General Linear Models" in Reference
13) illustrates common b.Insformations that may prove helpful.

2. Do the individual data points in the various distributions

appear reasonable? In particular, look for extreme values

(outliers) that deviate markedly from the pattern. If these

are coding, scoring, or tabulation errors, correct them or

drop the case from the data set.

Extreme values, whether high or low, exert unusual leverage
on measures of variation and association. Deviant cases that

are not due to scoring or tabulation error are troublesome

enough without creating added problems by retaining erroneous

data.

A handy rule df thumb for samples of 50 or more cases ft that

the standard deviation of the distribution usually will be
about 20% of the range of scores (i.e., the difference

between highest and lowest scores). If standard deviations

substantially different from that are obtained, a closer look

is required at the scores in the distribution.
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Any data set may contain errors that are never spotted
,because they fall within the expected range.. A basic
assumption in all statistical analyses is that such errors
are random, rather than systematic, and that they are
unrelated.

3. The multiple regression equations that do the best job of
accounting for variation in the dependent variable are
deriVed from predictor variables that are not highly corre-
lated with one another but show reasonable correlation with
the dependent variable:

Recall that the logic of regressfon anslysis assumes additiv-
ity. ,One wants combinations of predictors that will add
something new, rather than redundancy, to the explanation.
If two or more predictors are correlated strongly with one
another and also correlatad reasonably strongly with the
dependent variable, consider either dropping one of the
predictors or.combining the predictors into a composite
vviable. Tactor scores often prove helpful in reducing a

set of interrelated predictors to a lesser number. This
procedure is not without hazard, however, for the derived
factor score is an abstraction that is not always easy to
interpret.

It is essentiAl to do something about predictor variables
that are correlated very highly with one another. Appro-
priate ways of dealing with what statisticians call the
"multicollinearity problem" go beyond a simple visual scan of
bivariate (two-way, zero-order) relationships between pairs
of independent variables. However, forewarning of likely
multicollinearity problems comes from discovéring'several
zero-order correlations of .80 or more (whether positive or
negative in sign).

One of the problems of multicollinearity is that the regres-
sion coefficlents will be un,stable from sample to sample. In

an extreme case of multicollinearity, the regression solution
may be indeterminate. The rule of thumb -- get rid.of the
redundant measures by dropping them or folding them into
constructed composite variables.

Suggestion 3: Expect to go through several trials of
"cut-and-try."

One way to state the goal of multiple regression analysis, as
noted in Appendix.C, is to minimize errors of estimate. This implies
that the best solution will be the one that most nearly satisfies the
following assumptions:'

1. The model,has no errors of specification:
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a. Relationships are linear (or are made so through scale

transformationt),

b. All relevant variables are fncluded,

c. All irrelevant variables are excluded.

2. No errors of measurement exist.

3. Errors uf estimate are csntered at zero, are approximately
normally distributed, have similar variance throughout the
ranges of X-values, and are unrelated to the independent

VrAriables.

Without denying the importance of assumptions regarding the errors
of estimate, the most important of these three assunptions are those
regarding specificatfon and measurement error. The cut-and-try

referred to at the outset involves trying out different combinations of
predictor§ to assure inclusion of relevant ones and exclusion of

,irrelevant dnes. At each step in such trials, a new prediction model

is being tested. Itis not unusual to go through a half-dozen or so
trials before a couple of models settle nut as offering essentially

equivalent total R2 values. These two or so Mese models will
differ Somewhat in the regression coefficients associated with vari-
ables common to each model due to differences among the models in the

total combination.of predictors. Selection of a favored solution,

given essentially identical error or residual for each, becomes a

matter of judgment and preference. Usually the preferred model will be

the one that requires the fewest number of predictors or that can,be

interpreted most simply or both.

The assumption about errors of measurement can and should be taken

seriously. For example; if fallible tests provide data for some of the
variables, the.efforts directed toward improving the reliability of the

tests can be worthwhile as a.means of reducing measurement error. Such

effort, however, implies a cycle of inquiry rather than mere cut-and-

try for the best combination of predictors because a change in a test

will also result in achange in the basic data set. Refining measures

as a means for improving prediction through regression analysis implies

replication over new samples.

Suggestion 4: Consult a statistical analyst whom you trust.

Perhaps this should have been the first suggestion, but that would

have inplied even more emphasis on questions of procedure rather than

of substance. Every analyA, no matter how experienced, will find
occasions when other opinions are helpful. For an analyst who is not

particularly experienced with moderately advanced statistical methods

or who is unfamiliar with statistical packages that simplify computer-
ized procedures, consbltation may be essential rather than merely

helpful,
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Many yariations in the7Planning and conduct of statistical
analyses of muitivariate data have not been mentioned in this repert
(see espetialty. Appendix C),. Somemay be useful and particularly
fitting to the evaluation research questions,you wish to tackle. For
example,, the stepwtse procedures in multiple regression analysis can be
helpful if one is-seeking to specify-an efficient prediction equation
from,a,pool of candidate predietor variables. If the order in which
predictor variables are entered in a stepwise program is controlled,
the several eombinations of solutions can be generated to allow the
somewhat controversial commonality analysis to be performed (see'Mood,
1971; Kerlinger & Pedhazur, 1973; Cooley & Lohnes, 1976). , Path
analsis, as a method of testing hypothesized causal relationships, has
not been mentioned; again, Kerlinger and Pedhazur (1973) or the
ubicmitous SPSS manual (Nie, et al., 1975) provide introductions and
references to other sources.

ctor scores also have been mentioned as a way to construct
composite variables from seyeral related measures. Factor analysis is
a sufficiently specialized topic to need a consultant who issfamiliar
with various methods.

Section III of this report concerns more substantive questions of
conceiving and evaluating different instructional treatments as alter-
natives to present ones. The preceding discussion and Appendix C
identify some of the methods that can be used to assess the worth of
new instructional treatments as alternatives to present ones.

II TEST ITEMS AND TESTS IN CRITERION-REFERENCED MEASUREMENT

Introduction

Guidelines for the development of items and'tests for criterion
referenced measurement are presented in some detail in the Interservice
Procedures for Instructional Systems Development (AFM 50-2), particu-
larly as part of Block II, Phase II of the ISD model. Following ISD
procedures will help assure that tests are consistent with learning
objectives and training content. The guidelines in this report are
intended to supplement guidance in ISD. The following paragraphs
describe some practical approaches for assuring the selection of good
test items when combining them into tests.

Measurement Assumptions

Measurement,of student progress and achievement in any instruc-
tional environment is with reference to specified standards or cri-
teria. The assumption underlying instrdction is that 4 student will
perform to the criterion specified,for the instructional segment, given
time, effort, and access to appropriate instructional resources.
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Because students differ from one another on such factors as the skills

they already possess, their motivation to learn new things, the amount

and quality of assistance they seek and obtain, and so on, students

also will differ in the time they require to achieve a criterion

score. Each student's route to mastery of instructional content may

differ from others in the number and kinds of errors they make and the

number of trials they require. It is assumed, however, that eventual

achievement of a criterion score denotes mastery of the instructional

content to which a test applies. Thus, criterion-referenced measure-

ment seeks to specify what a student can do.

. An illustration of differences among student; is summarized

graphically in Figure 7. This graph illustrates the differences in

variability among trainees in a self-paced technical training course on

two complementary measures of performance: the number of test attempts ,

required to reach criterion and the measured time required to reach

criterion. Both number of attempts and time have been scaled to a

common-artificial scale to simplify comparison.
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FIGURE 7 VARIABILITY AMONG TRAINEES ON TWO COMPLEMENTARY
MEASURES OF PERFORMANCE IN'SELF-PACED INSTRUCTION
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Pie graphs are cumulative percentage (or ogive) curves. The curve
for "number of attempts" reflectS a highly skewed distribution (i.e.,
mostItrainees requird very few attempts to reach criterion, although a
few trainees did require many attempts). By contrast, the curve for
"measured time to criterion" is much more-nearly normal and symmetrical
in shape.

Curves of the same general form as shown in Figure 7 also are
characteristic of differences between different tests or, for that
matter, between trainees on a common test. For example, if the hori-
zontal axis in Figure 7were "total test score," a curve like the upper
oneiwould illustrate a difficult test -- about 60% of persons attempt-
ing it had a score of 2 or less. By contrast, the lower curve would
illustrate an easier test -- more than 60% of personvattempting it had
a store of 4 or more.

tvaluation and Selection of Test Items

In any'measurement effort, it is important that items making.up
the test be homogeneous; that is, be relevant to the particular.
instructional content whose mastery the iteMs seek to measure. .Asses-
sing the relevance of items and the degree to which a set of items
provides adequate coverorge of the instructional content to which they
apply are largely judgdental decisions for subject matter experts. The
process of arriving at such decisions is'often referred to as determin-
ing the "content validity" of a test.

While judgment must be relied upon to assess content validity,
determining the characteristics of items requires data from actual
trials of candidate items. It is only by trying items under tonditions
similar to their intended use that the relative difficulty of items can
be determined, as well as the effectiveness with which the items
differentiate more able students from less able ones and the consis-

,tency with which they supply such information.

Statistical concepts and procedures are'an indispensable part of
measurement theory and test development. In the sections that follow
(and in Appendixes A and B, Which include more detail about certain
procedures), the use of statistics has been limited to descriptive
methods that are generally familiar. Graphic methods have been substi-
tuted for equations when possible. For detail regarding more quanti-
tative methods.for assessing and describing item and test character-
istics, see references 2, 6, 10, and 14.

Evaluating Candidate Test Items Through Trial Use During
Instruction

In.criterion-referenced measurement under conditions of student
self-pacing or essentially unlimited instructional time, it is assumed
that all students eventually will perform successfully on all items in
the test. Furthermore, the test items are asSumed tb discriminate
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consistently; that is, if a studeni passes an item at one time, the

student will again pass the item if it is administered at a later

time. These assuMptions are illustrated in Table 3, using V" to

denote pass and "Fie to denote,fail.

Perfectly contistent patterns, as illustrated in Table 3, are

rarely found in practice. Individual differences among students,

guessing, ambiguous or otherwise poorly constructed items, and other

factors may result in irregular 'response patterns that deviate from the

idealized one. The purpose of item trials is to screen out the poor

items (or identify poor items for revision and improvement) so that the

eventual test is'one that provides both reliable and valid indications

of "true" student Performance.

Tabl e 3

IDEALIZED PATTERN OF STUDENT PERFORMANCE ON TEST ITEMS

lime 1 Time 2 Time 3 Time 4

tem AR Item ---Ttem Item

Student abcd abcd abcd abcd_ _ _ _ _ _ _ _ _ _ _
1 PPPF PP'PP PPPP PPPP
2 PPFF PPPF PPPP PPPP
3 PFFF PPFF PPPFPPPP
4\./ FFFF PFFF PPFF PPPF
5 FFFF FFFF PFFF Pp5FF

In the illustration shown in Table 3, the time scale denotes

points that span the period of instruction: preceding, during, and

after. If Time 1 in Table 3 denoted a four-item test given prior to

instruction, the reiults Would indicate that Student 1 probably

required very little instruction since that student,passed theee of the

four items before receiving any new instruction. By contrast, Students

4 and 5 passed none of.the items at Time 1. If Time 4,denoted the same

four-item test given upon completion of instruction, the results would

show that Students 1, 2, and 3 passed all items, Student 4 passed three

of the four items, and Student ,5 passed two of the four items. Another

inference that,could be made from the pattern of successive test

administrations is that Item a was the easiest item, Item b was the

next easiest item, and go on.
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If practical considerations governin6 the instructioral arrange-
ments permit it to be done, a direct-approach for assessing and screen-
tng items is to administer Ine trial items to actual students at
similarly spaced intervals before, during; and following.instruction
coincident Oth development.and refinement of test items. Successful
performance on test items is assumed to be a function of instruction.
Therefore, the expected performance pattern would approximate that
shown in Table 3 if theltems were good,ones.

How many.students are needed for such trials and how many trials
.

should be made? Clearly, there must be at least two trials, and three
Or moretrials will yield more dependable evidence. The minimum number
of students needed depends' partly on the degree of confidence desired
in the results and latrtly on the number of possible response patterns.
If approximate estimates are.acceptable, a three-administration trial
should have at least 16 students, and trials with more than three test
administrations should haVe 30 or more-students. If highly accurate .

estimates of item characteristics are needed, then the number of
students needed may be many times that number. As a general rule,
however, trials with from 30 to 60'students should yield data that are
accurate enough for most practical decisions regarding the quality of
items:

Appendix A is an extended discussian of an approach for eva1uating
candidate test items during the conduct of self-paced instruction. The
major part of Appendix A is devoted to a step-by-step example with
imaginary data for a three-trial evaluation of candidate items.
Following that detailed example, suggestions are given for extending
the method to more than three trials.

Evaluating Candidate Test Items Through Trials with Cross-
Sectional Samples

Another approach for estimating the characteristics of candidate
test items for criterion-referenced measuhement is to administer the
items to samples of people selected to represent levels of competence
in the performance area to which the test items apply. This approach
may be an alternative when it is not feasible to administer the candi-
date items to students at intervals before, during, and following
training as described above. The approach also may be used to .comple-
ment the repeated measures procedure and thereby add to the infaiation
available for evaluating and refining items.

In the three-trial 'approach described in Appendix A, students.
respond to the fUll set of candidate test items at approximately
equallY spaced time intervals asthey experience training. With that
approach, the functional relationship between training and test item
performance is established directly. If the items are well conttructed
and appropriate to the contentof'instruction, the mean level'of
student performance on each test item will increase with each succes-
sive administration. If%this pattern does not occur for certain items,

34

39



A

then,those items are assumed to be flawed in some wv and either are

revised and tried again or are rejected and repladed with new items for

tryout.

The ,cross-sectional sample approach substitutes blown levels of

----experience, proficiency, or competenoe-#6,time in training. Item

characteristics similar in form to thw illustrated earlier shoutd

result -- iiiumtng, of course, that the items are well designed And

"apOropriate to the ITe-rformapce domain to which the instruction is

. directed. These.assumptions-are_illustrated in Figure 8.
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FIGURE 8 TYPICAL ITEM OPERATING CHARACTERISTICS
FORAMS ADMINISTERED TO PERSONS
OF DIFFERENT LEVELS OF PROFICIENCY
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The graph in Figure 8 shows ti,e mean proportion of correct re-

sponses to hypothetical items A, B, and C hy persons from three broad
levels of proficiency,in the substantiye area to,which the items
apply. The steep slope for Item A ihdicates an item answered correctly
by very few persons of low proficiehcy and aniWered correctly hy most
persons of high proficiency. By contrast, Item C is one that does not
differentiate between persons of low and moderate levels of proficiency
and also is not-aniwered correctly hy nearly half of the persons with
high proficiency. The behavior of Item C.signals-a problem. Item C
may be poorly constructed so that response errors are due to ambiguity,
clumsy wording, or other flaws. However, if study of the item does not
indicate obviousflaws in warding; ihstructions, etc., it could be that
the instructional content to which the item applies concerns an attri-
bute 'that is not related to proficiency. If further investigation
supported that possibility, then one would reconsider the portion of
the curriculum that dealt with the attribute in question. Thus, the
screening of test items on samples.of persons representing degrees of
proficiency in the skills toward which the instruction is directed can
help identify curriculum problems as well as provide a way for refining
test items.

A
,

'Samplinj Considerations. The sampling objective is to construct a
sample of peop e w ose proficiency in'the content area of interest
spans the range from "not at all proficient" to "very proficient or
expert."

1. 'If the tryout of candidate test items is for a course now
being taught but under revision, or for a "new", course that
is related closely to already existing courses, then an
appropriate proficiency range might be satisfied by selecting
(a) persons assigned to the school who have pot yet begun
instruction, (b) persons at various intermediate stages of
instructfon, and (c) near-graduates and very recent graduates
of the instruction.

2. If the.test items are.for use in a wholly
1
new course of

i

instruction, identifying people who are ery proficient or
expert may not be easy. In test develo ment for wholly new
courses, one may need to use the same s bject matter exqgts
who.helped devglop the instruction as some of the trial
subjects forcandidate test items. Finding experts other
than those may be difficult. (The problem of finding experts

,

is offset somewhat by the fact that there will be a large
.

pool of people with little or no prdficfency and who are
...,

prospective students in the new cou'rse; for the lower range
of the proficiency scale, the problem is simply one of
appropriate selection.)

It should be emphasized that the method used for classifying
people according to level of proficiency must be based on consider-
ations other than actual test performance. Such descriptors as pay
grade, AFSC, or years of experience may be useful in-deriving a
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working definition of proficiency. Ratings by supervisors of perfor-

mance on the job also may be helpful. Even self-nomination could be

cons'dered. The point is that, even though the classification of

proficiency inevitably will be affected ty judgment, the bases for

-classification must be independent of performance on the test items.

A Detailed Example. Appendix B describes an approach for evalu-'

ating candidate test items and constructing tests with trials of items

over a range of proficiency. The approach is developed through an

example of.steps to folloW in identifying clusters of homogeneous items

and then expanding the number of items in each cluster to achieve

acceptable measurement reliability.

The importance of homogeneity among test items is emphasized

throughout Appendix B, just as the tame point is emphasized in Appendix

A. Homogeneity is essential to reliability. Furthermore, in crite-

rion-referenced measurement, item homogeneity is vital to one's ability

to make diagnostic interpretations of achievement test results.

Dependable diagnoses of learning difficulties provide the essential

Imsis for devising alternative instructional approaches to improve the ,

payoff from instruction.

III DESIGNING AND EVALUATING ALTERNATIVE INSTRUCTIONAL TREATMENTS

Introduction and Overview

This section defines, describes, and illustrates an operational

approach for a continuing program of research and evaluation directed

toward improvement in technical training. The approach builds upon the

preceding sections, as well as the'appendices, in which the following

elements were developed:

1. The relationship of technical training to on-job performance

2. A classification of predictors of performance in training

3. Diagnostic evaluation of both curricula and means for

measuring trainee performance to identify areas of desirable

improvement

4. Rudiments Of experimental design and statistical models

appropriate to the analysis of data from such experiments

The principal new ingredient in this section, developed in some

detail to illustrate certain steps in the integrated approach, is an

example of how one might analyze and evaluate the performance of A
trainees as a basis for designing alternative instructional treatments

to be tried experimentally and evaluated before adoption or rejection.
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Figure 9 displays the main functions in a continuing program to
evaluate, refine, and improve,technical training.

The upper box in Figure 9 identifies the required external evalu-
ation -- the critical exchange of evaluative information between an
instructional program and the commands that use its graduates. A
central function of those responsible for management of an instruc-
tional program is to assure that this information exchange is sustained
continuously.

The lower box in Figure 9, labeled internal evaluation, encloses
those functioni related*most closely to the appraisal, revision, and
empirical tryout of instructional programs intended to improve the
quality of instruction. The continuous exercise of internal evaluation
functions is the responsibility of staff of a training facility.

Each of the functions illuttrated in Figure 9 is discussed in
greater detail in the paragraphs that follow.

Linkages Between External and Internal Evaluation

The ISD model represents both'internal and external evaluation as
elements of the Control phase of instructional systems development,
thus underscoring (a) the importance of systemetic evaluation as a
basis for revision and improvement of instruction and (b) program
management responsibilities for assuring instructional quality. The
ISD model offers many useful suggestions for the planning and conduct
of internal and external evaluations, as well as ways in which evalu-
ation data can be used to guide revisions in instructional content or
procedures.

The ISD approach generally assumes the existence of an ISD Program
and an ISD Program Manager with responsibility for assuring that evalu-
ation functions are appropriately planned, documented, and carrTed
out. In the ISD concept, plans for internal evaluation are deversped
in parallel with plans for the instructional program. Internal evalua-
tion occurs throughout all stages of instruction. The primary objec-
tive of internal evaluation is to determine the degree to which specif-
ic instructional objectives are met. A secondary objective of inter-
nal evaluation is to ascertain whether the ISD process was successful.

External evaluation, in the ISD model, occurs after students have
completed instruction and have been assigned to jobs. The focus of
external evaluation is on post-instructional performance. External
valuation assesses the quality of the ISD job analysis toward which
instruction was directed and the "fit" between job requirements and the
instruction Provided. Thus, external evaluation identifies job tasks
for which provided instruction was not adequate. In the ISD concept,
it is preferable to assign external evaluation functions to agencies
that were not involved in the instruction. It is assumed that this
detachment enhances objectivity.
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OF ALTERNATIVE INSTRUCTIONAL TREATMENTS
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The distinctions drawn between internal and external evaluation by
the ISD model have many similarities to formative (internal) and soma-

,

tive (external) evaluation (see, for example, Scriven, 1967). Even
though summative evaluation may be performed competently by someone also
iniolved in formative evaluation, the issue of credible objectivity
remains. It is wise to separate the functions as much as possible.

The ISD concepts of internal and external evaluation are sound, .

and the suggestions in the ISO manual for conducting both are practical
ones This report endorses the concepts and urges their systematic
apr ication.

The model shown earlier in this report as Figure 9 is intended to-
be in harmony with the ISD model. Figure 9 is drawn to emphasize a
point, however, that does not always emerge clearly from the ISD formu-
lation: it is a school management (or commaMd) responsibility to-
assure that-both external and internal evaluation occur. This respon-
sibility holds"whether or not it is feasible to establish ISD Program
teams or assign external evaluation-functions to outsiders.

"Program management," as identified in Figure 9; refers to the
management of the instructional program -- the commanding officer,
course supervisor, and the staff responsible for the school or training
facility. When it is possible to establish an ISD Program staff,
accountable in its performance to the school, such an arrangement is
desirable and likely to result in more attention being given to evalua-
tion functions. When such arrangements are not possible, the
evaluation functions remain to be addressed by the best available
dlternate means.

This report suppoks fully the position that the ultimate criterion
for judging the adequacy of job-related training is the performance of
the school's graduates when assigned to those jobs for which their
instruction was intended. This viewpoint was presdnted first in Figure
1 in Section I and represented again in Figure 3 in Section I. The
same viewpoint is focal to the relationships shown above in Figure 9.

An internal evaluation that reveals weaknesses in instruction hy
identifying objectives that are not being met almost necessarily means
that an external evaluation also will identify flaws in the instruc-
tional program. ("Almost necessarily" because there is a remote chance
that instruction will meet job task requirements but not fully satisfy
internal course objectives. If this occurs, it means that the instruc-
tional program is over-designed against the criterion of job perfor-
mance.)

An internal evaluation that shows instructional objectives as
being met does not necessarily mean positive findings from an external
evaluation. A course may appear effective by internal criteria and yet
be found inadequate in some respects when judged by external criteria.
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This could be caused by many factiirs, including: changes in the job,

4nadequate instruction, poor analysis of the job to be trained, or

invalid external evaluation.

Evaluation of instructional content and procedures must refer back
to the job requirements that provide the justification for instruction

in the first place. It is not sufficient to show, through internal
evaluation, that course objectives are being met unless it also can be
shown through external evaluation that the objectives are appropriate
to the requirements of the jobs for which the instruction is intended.

Assessing Needs for Alternative Instructional Treatments

Needs assessment is the process of identifying and specifying the
differences between desired (or acceptable) conditions (often stated as

goals) and present conditions. Discrepancies between desired and .

existing conditions are called needs. End products of a systematic

needs assessment are statements ofobjectives that the instructional

program will seek in order to eliminate discrepancies between what is

desired and what currently exists -- objectives designed to "meet the

needs." The means for achieving these objectives constitute the

program plan.

There is no special mystique or hidden trick in needs assessment

-- the process amounts to a commonsense audit to create, so to speak, a

balance sheet in which goals are rectified against accomplishments to

determine needs. Some reminders may be helpful, however:

1. Systematic audits of goals and accomplishments should be

undertaken periodically to assure that no important view-

points or sources of evidence are overlooked.

2. Outcome goals should be stated in language that specifies a

measurable attribute (ability, skill, application of know-

ledge, attitude toward job, etc.). Process goals will

identify conditions that trainees or instructional staff will

experience or cause to occur. An outcome goal should fit a

sentence stem such as the following: "At the end of the

program (unit, lesson, segment, block), trainees will demon,

strate..." A process goal should fit a sentence stem such

as, "During the program, trainees (instructors) will experi-

ence (take part in, do, cause, observe)..."

Needs assessment, then, serves both diagnostic and prescriptive

purposes by identifying discrepancies that call for correction, and

providing information from which to rectify discrepancies. The tools

of needs assessment are very much like those of evaluation -- end-goals

(products) must be stated in measurable terms, process-goals and imple-

mentation objectives must be defined, and measures must be obtained

from which to assess the manner in which existing conditions meet

standards defined by the program's goals.
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Needs assessment calls for both external and internal evidence.
External evidence of training needs will come primarily from feedback
about the performance of graduates of training programs, and from
information about job task requirements.

Internal evidence of training needs will come largely from assess-
ment of the degree to which course objectives are being satisfied --
failure rates are higher than desired, training time is longer than
intended, certain trainees have unusual difficulties with some mater-
ials, and so on.

The importance of integrating external and internal evaluation may
be illustrated by a commonsense question that is not always raised --
what characteristics of performance during training are associated with
later performance on the job?

Among staff in a training facility, it is all too easy to assume
that the best performers during training also will be the best perform-
ers on the job. Conventional instructional wisdom usually views rapid
learning as ideal in a self-paced instructional environment, and error-
free learning as ideal in a group-paced instructional environment. But
it does not necessarily follow that the trainees who perform best in an
internal evaluation will be evaluated similarly by their supervisors on
the job..

More specifically, consider a cross-classification of types of
trainees according to two performance measures in a criterion"-
referenced-self-paced'instructional environment:

Attempts to Criterion
Time to

Criterion Few Many

Long

Short A

From a training performance perspective, Type A performers pose the
fewest problems (are "best"), and Type D performers pose the most
problems (are "worst"). Types B and C represent contrasting styles; if
speed is given high weight, then C is better than B but if error-free
performance is given high weight, then B is better than C. Left
unanswered is the question of how such performance patterns relate to
performance on the job. If Type B trainees perform better on the job
than do Type C trainees, then efforts by training staff to minimize
only training time could be misdirected.

The formulation shown in Figure 9 implies a separation between
steps or stages of internal evaluation. Actually, the functions of
analyzing needs, specifying objectives, and designing alternative
approaches are very closely coupled to one another, and all draw from a
common base of evidence. Needs assessment feeds directly into the
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specification of objectives for new or revised programs, while the

design and development of programs fulfill those objectives.

Readers will recognize simdlarities between needs assessment

functions, as discussed above, and earlier discussion in Section I in

conjunction with Figure 3. The earlier formulation illustrated in

Figure 3 is a decision-oriented needs assessment that focuses on

trainee performance measures; both during and following traintng, as

the prime sources of evidence from which to judge the need for devising

alternative instructional treatments. A central 'Point in the earlier

argumehts was that reliable and valid measures are essential to a

diagnosis of program strengths and weaknesses.

Specifying Objectives and Designing Approaches

Instructional objectives and their associated instructional treat-

ments are statements about the expected performance of trainees follow-

ing exposure to a segment of instruction. As noted above, an explicit

performance objective will specify a measurable attribute that'a trainee

will demonstrate as evidence that the objective has been achieved.

In criterion-referenced measurement, particularly with student

self-pacing, the key measures of instructional effectiveness are time

to criteriOn achievement, and number bf attempts to successful per-

formance on thR criterion test. Subordinate measures also may be

obtained, such as the time to the first attempt of the criterion test

and test score obtained on the first attempt (or on each attempt).

(See Appendix D for an elaboration of these measures and discussion of

the ways in which they related to one another in an analysis of actual

data from techrecal training in a computer-managed environment.)

Objectives specific to units or segments of instruction in a

criterion referenced, self-paced instructional environment normally

will refer to measures of performance such as those noted above. Other

program objectives may refer to additional measures of importance, such

as the following:

1. Average total time for course completion.

2. Variability among trainees in the total time to course

completion.

3. Failure rates.

The task of contriving real alternative treatments to satisfy

instructional objectives is more difficult than stating the objec-

tives. Appendix D presents an illustration of steps that can be taken

in analyzing trainee characteristics and performance as a basis for

developing alternative instructional designs.

43

48



Appendix D contains two main parts. The first part concerns rela-
tionships among four measures of trainee performance in a computer-
managed instructional setting in which instruction was largely self-
paced. The four performance measures are (a) measured time to first
attempt of criterion test (MTM), (b) score on first attempt of criter7
ion test (LSC), (c) measured time to successful performance on the
criterion test (LTM), and (d) number of attempts to criterion (NATT).
Among other things, the analysis in Appendix D shows the following:

1. Time to first test attempt (MTM) explains some 86% of the
variability in time to criterion (LIM), since MTM is a
component of LTM. With the addition of the LSCas a

predictor, about 92% of the variability in.LTM is accounted
for.

2.. First attempt score (LSC) accounts for s6me 66% of tbe
variability in number of attempts to criterion (NATT). Time
to,first attemptt(MTM) adds.nothing since the time difference
between MTM and LTM is essentially unrelated to MTM. This
implies that other factors, such as stylistic differences,
must also,account for some variance in NATT.

3. LSC and MTM are correlated, but the relationship is not a
strong one (r = -.36; r2 = .13). A cross-tabulation of LSC
and MTM scores provides one way to characterize four broad
groupings of trainees according to their response styles: A
= fast and accurate, B = slow and accurate, C = fast and
inaccurate, and D = slow and inaccurate.

In the last portion of Appendix 0, a hypothetical analysis is
illustrated with fictitious data to show how certain trainee attributes
could be examined in relation to performance measures as a means for
interpreting differences in response styles. This hypothetical example
shows a "basic skills" factor as the dominant predictor in accounting
for LTM. The example also shows that basic skills may interact with
other variables in unexpected ways. For example, with the fictitious
data, an "anxiety" factor appears to interact with basic skills such
that the combination of high skill and high anxiety is better for
predicting low or short LTM than is the combination of high skill and
low anxiety. Some speculative questions are derived from this hypothe-
tical analysis to illustrate a possible approach to the problem of
contriving alternatives to the present instructional treatment as a way
of reducing the average time to criterion and reducing the number of
errors (and hence the number of attempts before achieving criterion).

To extend the analysis beyond the point reached in Appendix 0,
imagine that three ideas evolved as potential alternatives and an
investigation was neded to determine whether any of these had the
desired effect of reducing time or reducing errors or both:
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The first idea is to use.a pretest or screening test to esti-

mate whether a trainee should proceed directly to the criterion

test rather than spending time on instruction. This idea is

illustrated in Figure 10. The evaluation questions implied by

Figure 10 are the following:

,

1. W is the validity of the pretest as a predictor of

scores on the criterion test?

2. What is the validity of the-pretest as Ilpredictor of time

to criterion and number of attempts to criterion?

The idea illustrated in Figure 10 implies A cutting score (a

score which is "high" enough) on the pretest but does not

define it. The best way to identify an appropriate cutting

score would-be-to-ignore the pretest score at the first

decision point in Figure 10 and.assign trainees at random to.

one or the other path to the criterion test. This wOuld assure

the full range of pretest scores on both tracks shown in Figure

10. Specification of an appropriate cutting score for future

use would then be based on actual performance data. .

As an alternative to this, a moderate level.cutting score could

be defined provisionally with the expectation of adjusting it

as performance data accumulated. This approach is not as

"pure" from an experimental design viewpoint, but it has the

practical appeal of reducing the number of trainees with low

pretest score who would by-pass instruction and be almost sure

to then fail the criterion test.

We suggest starting with a fairly"low cutting score on the

first few trials and gradually moving it higher with successive

blocks of trainees. We would increase the cutting score based

on considerations of testing time vs. instructional time

saved. Any cutting score from imperfectly reliable tests, it

must be remembered, will be wrong some of the time.

The principal gain from the screening test idea illustrated in

Figure 10 will come from forcing trainees who do not need the

instruction to bypass it. In terms of trainee response styles

referred to earlier, some "accurate but sloe trainees will be

forced to the fast track and some "inaccurate but fast"

trainees may be encouraged to be more deliberate.

The second idea is a variant of the first one. In this alter-

native, the length of criterion tests would be increased -- for

example, doubled in length. Trainees would be strongly

encouraged to attempt the criterion test as soon as possible,

but'also would be advised that they were not expected to pass

it on the first attempt.
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PRIOR SEGMENT
OF INSTRUCTION

AEGMENT OF
INSTRUCTION

NEXT SEGMENT
or INSTRUCTION

HA-423582-10

FIGURE 10 EXAMPLE OF USE OF PRE-TEST TO SCREEN TRAINEES
FOR CRITERION TEST READINESS
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The main argument'underlying this alternative is that trainees-

may learn more from failing a test item than from answering it

correctly. The proposition to betested is that feedback from

errors made over several rapidly paced trials will lead to

earlier criterion performance than will fewer, more'deliberate,

trials with few or no errors.

Importantaddttional purposes will be served by increasing the

length.of the criterion test. First, a test with many items

makes it easier to be certain that all important instructional

content is represented in the test. (ip measurement jargon,

the "domain sample" is increased so that the "curricuTar

valfility" of the test will be greatet...)Setiind, test reli-

ability is a partierfundtion-of-tist length. The longer the

test, the'more-reliabTi are the scores obtained from it. (See

Appendixet-A and B for discussions of test reliability as a
function of item'homogeneity and the number of items.) The

point is that if we are going to pass trainees with less

instructions, we want to be quite sure about the correctness

of our pass-fail decisions.

The third idea is somewhat more radical than the preceding twoi-

both of which assume individual self-pacing. The third alter-

native introduces two notions that depart from the self-pacing

mode: group-pacing and peer tutoring.

The rationale for the third idea grows from the range of

response style differences among trainees.. To repeat the
4 earlier categorization:

Attempts to Criterion

Time to
Criterion Few Many

Long

Short A

The idea is to create tutorial groups by cross-matching oppo- -

site types and, alsof to define standards of performance that

groups must satisfy before individual group members progress to

the next instructional segment. Thus, one group would be com-

posed of Type A and Type D trainees and the other group would

be made up of Type B and Type C trainees. (Several groups '

could be organized. For example, if there were 1? Type A

trainees and 10 Type D trainees in a class, one might organize

from three to five A-D groups so each tutorial group would be

fairly small.) The group standard for propess to the next

instructiOnal segment might be defined as successful criterion

performance by a specified percentage of all trainees in the

group; for exampTe, 80% or so. It might be specified further

that all trainees must attempt the criterion test within some

defined time limit.
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The intent of the A-D grouping is to assure that Type D stu-
dents.have able tutors. The imposed requirements of group
performance are to prevent Type A trainees from abandoning
their slower companions. Similarly, the intent of the -B-C
grouping is for each to favorably influence theaother -- for
Type B trainees to help Type C trainees with instructional
substance and for Type C trainees to help Type B trainees
overcome some of their apparent reluctance to commit an error.

Prior research offers some clues as to what one.might expect
'from a tutorial group experiment. For example, it is often
found that those who tutor receive greater, benefit than do
those who are tutored. If such a finding were to occur in.the
training experiment, it might suggest that Type A trainees --
should be excluded from tutorial,groups and that tutorial
groups be composed of roughly balanced combinations of Types B,
C, and D trainees.

The imposition of a group standard of performance could have
undesirable.effects on trainees' attitudes toward instruction, e
especially if the group standard meant that too many otherwise
qualified trainees were being detained while their slower
companions caught up with thelb. On the other hand, if the
experiment worked out, the net effect'should be (a) a reduction
in the average number of trials, (b) a reduction in performance
variability across the aggregate of all trainees, and (c) a
reduction in the overall average timeto criterion. These net
effects would be the result of faster performance and fewer.
errors by0Type D trainees, faster performance by Type B
trainees, and fewer errors by Type C tratneeS. Type A trainees
might not show faster or more-accurate responses on the criter-,
ion test than they do now, but they should benefit from their
tutorial roles.

A group tutorial experiment as described above could not be
arranged until the first few units of instruction in a course
had been completed so that trainee response styles could be
reliably established. Means for organizing groups could be
considered as an experimental question in itself since the
effects of heterogeneous grouping on individual.motivation can
only be guessed. Some trainees might be more effective as
tutors if they knew that was why they were in the group. On
the other hand, less able trainees could find that their
performance was inhib.4ed, rather than facilitated, by knowl-
edge that they had been paired intentionally with more able
companions who were expected to help them. The questions are
worthy of research under the heading of "internal evaluation."
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Developing Alternative ApprOaches

The task at this stage to operational ize the concepts
developed

in the preceding Stages so that an evaluation
experiment can be con-

ducted. Discussion of steps i developidg an alternative apOroach

suitable for tryout is illustrated by extending the three alternative

design ideas just presented.

04
The Screening Test Design '

The first idea was to,use a Screening test or pretest prior to

beginning an. instructional segment\ Based on
prgtes formance,

trainees would be either'routed directly to a' attempt on the

Criterion test or required to go through the instructional materials.

The purpose of the approach is to reduce average total time to crite-

rion by forcipg an immediate attempt on the criterion test by trainees

with a high probability of successful performance.

The new 6roduct needed to evaluate the utility of this *roach is

a pretest that is parallel to e criterion test. By a strict defini-

tion of "parallel," this means a new test that cov rs the same content

areas, is identical in diffitulty, and results in score distribution

identical. to that'of the criteriontest if the cri erion.test also wer'e

administered prior to instruction. If literal ide ity between the two

tests 'coul d te_sati §fied, the correlation
between them would be tl .0.

It is impossible to wholly sittsfy the literal requirements of a

, I parallel test. Nevertheless,'statistical identity in test parameters

(content, mean, variance, number of items) defines the develppment

objective.

Developing a parallel test tO be used ,as a pretest offers an ideal

oppokunity to reexamine and refine' the criterion test as well. Accord-

ingly, the parallel tcst development should begtn with analysis of the

existing criterion test. Particular attention in this analysis should

be .given to item horpogeneity, as discitsseu in Appendixes4t and B.
.

Acsgmulated records of the performance of earlier trainees on the

criterf5h test may be sufficient for thii, analysis. If not, an initial

step will be to obtain response data on the'criterion test items from a

sample of persons like those for whom the test is intended. Guidelines

for sample size relative to the number of items aft discussed in'

Appendixes-A and B.

Development of the parallel form probably is undertaken most

conveniently by treating the exiiting criterrow test as an item pool,

each-item of which .is to be paralleled: .

1. Be sure that the pool pf items (i.e., the existing criterion

test) provides cont ht coverage of the instructional segment.

A" systematic way to ake this check'is first to prepare a

comprehensive list f the objectives and sub-objectives in

r
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e:

the instructional segment an .then to identify test items
that apply to each objective and sub-objective. If there are
no test items for an objecti e or sub-objective, either
additional items are needed or the relevance of the objective
should.be reconsidered.

2. Determine the homogeneity of the 'Items in the pool (iee
Appendix A or B). If non-homogeneous items are counted as
part of the same test, re-group items into homogeneous sub-
sets. (A subset, at tbis point, might have only one item.)
If criterion performance on the test hed been defined earlier
as correct responses to a proportion of all items and all
items are not homogeneous, re-define criterioli performance a\s

correct responses to proportions of each homogeneous subset.\

3. Prepare new items that are parallel to items tn the existing
pool for each content area defined_by an instructional Objec-
.tive or sub-objective: Each instructional Objective or sub-
objective should now have at least two test items; preferably,
soMe multiple of two (i.e., 4, 6, 8, etc.). Thenumber of

. items per objective should be roughly proportional to the
importance of the objective.

4. Consider the original items and the new ones as a single
pool. When content coverage, editing, format, and other
features appear satisfactory, administer the entire pool of
old and new items to a new smple of persons like those for
whom the test is intended. Perform an item analysis (Appen-
dix B provides an example of issues to consider in such an
analysis) Cluster items into relatively homogeneous subsets
as necessarY.

5. Construct two parallel forms of the total test so that eaCh
form covers the same content and both are as nearly similar
in other respects (e.g., item means, test means, test vari-
ances) as can be managed. Flip a coin and call one form the
"pretest" and the other form the "criterion test." If it
proves impossible to achieve very high similarity between the
two forms, designate the easier form as the pretest.

The Extended Criterion Test Design

The second idea presented earlier (i.e., encouraging earlier'trials
on tests of increased length) is based on the notion that testing
oneself to get feedback from errors is a constructive strategy for
acce)erating learning time. Making errors is uncomfortable for many
people, however, so trainees must be shown that errors on the first
trial or two will help them focus their efforts to learn and are
therefore desirable. Criterion tests would be lengthened to increase
the likelihood of errors in early trials and also to improve the
quality of performance measurement.
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The procedure for developing a pretest that parallels the criterion

test also is appropriate for lengthening the criterion test if one

wished to try out this second idea. The only difference in test-

development procedures is that the two forms (pretest and criterion

test) simply would be merged into one longer criterion test. Proce-

dural steps for developing new items, however, would be the same as

already described.

The Tutorial Groups Design

The tutorial group's idea does not require the development of new

instructional materials or additional test items. Arranging conditions

for tryout of the tutorial groups idea would call for analysis of

trainees' performance/in prior sejents of instruction so that grouping

could be based on established response styles. Working definitions of

acceptable group performance also must be specified (e.g., time limits

within which criteridn tests must be attempted and the proportion of a

group that must meet/criterion before the group progresses to the next

instructional segmept).

If this approach is to be evaluated properly, such evaluation data

as trailiee reactions to the procedure should be obtained. Several

possibilities are reasonable, ranging flom group or individual inter-

views .tb questionnaires with a few rating scales and space for com-

ments. Performance data by group may be collated by aggregating

performance information as collected currently from individual train-
., =,11 +ha+ +hic imnliac ic A ende in each trainee record to define

trainee response style classifications and tutorial group assignments

so that data can be grouped appropriately for later analysis.

Evaluating Alternative Instructional Approaches Experimentally

Evalt\ating the merits of one or more alternative instructional

approaches relative to the instructional approach currently being used

calls first for developing a plan. The term, design, is more formal

than plan, put a design is'no more and no less than a plan that speci-

fies conditlons and procedures for obtaining and analyzing the data on

which to bae the eyaluation.

In the losing portion of Section I of this report ("Planned

Eiperiments with Alternative Instructional Treatments'"), sone basic,

design princi les/were discussed in relation to models for statistical

analysis appr prfate for dealing with the data. Also, Appendix C

contains an o erview of multiple regression analysis since this statis-

tical model iost appropriate to situations in which several variables

are of inter* , groups may not be equal in size, and the variables may

be a mixture of both categorical and continuous scale measurement.

Appendix C includes some discussion of ways to code experimental and

control groups so that aptitude-by-treatment interactions can be

estimated.
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A few points on the logic of experimentation, statistical tests of
experimental hypotheses, and an illustration of some basic designs will
simplify later discussion.

II As noted in Section I, experiments are performed to test proposi-
tlons or hypotheses of the general form, "If X under such-and-such
codditions, then Y- will be observed." In this formulation, "X" defines
the experimental variable that is under experimenter control, "such-
and-such conditions" define the circumstances under which the experi-
ment occurs, and "Y-11 defines the outcome measure or the dependent
variable.

For example, suppose that for a particular block of instruction
the first lesson was critical for understanding subsequent material in
the block. We might hypothesize that students with poorer reading
skills would benefit if this lesson was presented in a filmstrip mode
with few reading demands. In order to test this hypothesis, we convert
the lesson to filmstrip and randomly asstgn students to either the new
or old lesson and observe the effect on block time and score. Here,
"X" is which lessoa is taken, the conditions are random assignment, and
"Y" is block time and score.

Experiments are designed to ensure, insofar as possible, that the
outcomes are due to the experimental manipulations, i.e., are direct
tests of the experimental kypothesis. In the previous example, we
randomly assigned students so that we'could, after block completion,
identify.th e poor readers (using previously obtained measures of
reading i6ility) and compare block performance as a function of which
lesson was taken. 4, As an aside, this design also permits us to compare
the performance of better readers.

The traditional statistical approach to framing the experimental
question is to say that performance wtll not be affected by which
lesson was taken. This is called the nulTEYpothesis. We then use
block times and scores to reject this hypothesis, i.e., to shoiv that
there actually was a difference. If we are successful in rejecting the
null hypothesis, the only conclusion we ca\come to (because of the
experimental manipulation) is that the filmstrip lesson caused differ-
ential performance.

A numerical difference between experimental conditions sufficient
in magnitude for one to conclude that observed differmes are not
attributable to chance factors is a function of the size of the observed
difference divided by the standard error of that difference. The
standard error, in turn, is a function of the number of observations
(sample size) and the variability of the measures. Commonsense
prevails -- small differences with very small standard errors may be
statistically significant and large differences with large standard
errors may not be statistically significant.

Statistical analysis is based on the theory of probability which
assumes that samples of cases are drawn randomly from the population to
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which one wishes to generalize. Estimates of population values (parame-

ters) are made from sample values (statistics). Any specific sample

may be good, bad, or indifferent as a basis for estimating the popu-

lation value. Without drawing all possible samples, one never knows

for sure whether a specific sample provides a close estimate of the

population value. Sampling variation is one of the "chance factors"

that may lead to rejecting, or not rejecting, a hypothesis.

Inferences about population values based on sample values make use

of theoretical distributions (e.g., the bell-shaped, normal curve) as a

foundation for probability statements about the likelihood of an ob-

tained value differing from an expected one or about differences between

one or more obtained values. When an analyst says that a value (such

as the difference between the mean of an experimental group and the

mean of a control group) is "statistically significant," the analyst is

using shorthand to say that the probability is so small that a value as

large would be obtained by chance, that the null hypothesis of "no

difference" has been rejected.

Significance levels are defined in probability terms. For example,

values such as p < .05 may be attached to.an obtained value (such as

the difference between two means). This probability statement -- p <

.05 -- means that the chances are less than 5 in 100 that a value that

large would be obtained if the null hypothesis were true.

Specifying a probability level for acceptance or rejection of the

aull hypat:lasis is a mattcr of convention; curh probability values as

.05 or .01 are commonly used. These levels, however, are arbitrary and

adopted for convenience. \It might be,better if the habit df rejecting

or not rejecting a null hypothesis at some arbitrary level (e.g., p <

.05) were abandoned entirely and associated probabilities simply

reported and interpreted. Furthermore, it is important to note that a

difference can be statistically significant without being significant

from a practical standpoint. Does a time gain of X-minutes per

trainee, which may be statistically significant, make any practical

difference in the way that instruction is conducted? Such questions

are worth asking when one interpretS statistical findings.

It is also important to note that an inference drawn from an

experiment may be incorrect. Consider the following tabulation:

True Situation

Conclusion No Difference Real Difference

Real difference Type I error Correct

No difference Correct Type II error

Thus, if one rejects the null hypothesis by concluding a "real differ-

ence" when in fact there is not a real difference, a so-called Type I

error has been committed. The probability of a Type I error is equal
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to the significance level that has been defined for rejecting or not
rejecting the null hypothesis; if the .05 level is defined, then the
chances of a Type I error (false rejection of the null hypothesis) are
5 in 100. The significance sword has two edges, however. If one sets
a more stringent level (saY, .01) for rejecting the null hypothesis,
the chances increase that a Type II error (false acceptance) will be
committed. The chances of a Type II error can be reduced by relaxing
the level for rejecting the null hypothesis (e.g., p < .05 instead of
.01 or p < .10 instead of .05), using a more powerful statistical test,
and increasing the sample size.

This discussion of hypothesis testing is relevant to experimental
design considerations and suggests the following guidelines:

1. Samples should be randomly drawn if one expects to make
appropriate use of the methods of statistical inference. If
one is comparing the effectiveness of rival methods for
instruction, the people who experience the methods should be
assigned to one method or another by a randon procedure. As
will be noted later, one must pay attention to randomization
if the intent is to avoid erroneous conclusions.

2. Samples should be as large as reasonably possible. Larger
samples mean smaller errors and fewer errors of inference.

3. Hypotheses or prOpóSitions about expected effects of rival
treatments should be as specific as possible. A 4ypothesis
asserting that Treatment A will be superior to Treatment B
permits a directional statistical hypothesis to be tested.
Directional hypotheses are more powerful than nondirectional
ones: If the theory or arguments that led to the design of
alternate treatments is sufficiently persuasive for one to
predict the direction of difference between rival treatments,
then the experimental kypothesis.should be so stated.

4. View hypothesis testing in probability terms rather than in
categorical "reject-not reject" terms. A sizeable difference
obtained in an experiment with.small samples may fail to
satisfy some predetermined level for rejecting the "no
difference" hypothesis (say, p = .20 instead of p < .05).
One certainly would not claim discovery of immutable truth on
the strength of such weak statlstical support. On the other
hand, if the difference is in the hypothesized direction and
the principal reason for the high probability value (p = .20)
associated with the finding appears to be the small sample
size, one would want to test the hypothesis again with a new
and larger sample, rather than abandoning it. Conversely, a
"so what?" question is appropriate even when "statistical
significance" is achieved -- a difference can be reliable
without being of practical worth.
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Certain conventions have become common for representing an experi-

mental or quasi-experimental design (see Campbell & Stanley, 1963). To

illustrate, Campbell and Stanley portray the Pretest-Posttest Control

Group Design (a "true" experimental design) as follows:

R 0 X 0

R 0 0

In this representation, time runs from left to right. If symbols are

vertical relative to one another, they occur at the same time. If

symbols are on the same line, the events are experienced by the same

. persons. Symbols have the following meaning:

R = Random assignment
0 = Observation (measurements of some kind

X = Exposure of a group to an experimertal variable or event;

i.e., the experimental "treatment"

Thus, the representation above shows that a) subjects are randomly

assigned to experimental (X) or control (blank) treatments, (b) obser-

vations (measurements) are made prior to exposure (the pretest), (c)

experimental treatment occurs, and (d) observations (measurements) are

made following exposure (the posttest).

This notation scheme uses a
experienced by the control geoup

nothing occurs. The blank space

-- for example, the "old way" to

being contrasted.

blank space to represent the treatment

This does not nececsarily mean that

usually will denote a rival treatment

which the "new (experimental) wAy" iS

Campbell and Stanley also use a horizontal dashed line separating

two groups to indicate that groups on either side of the line are not

equivalent to one another (for example, intact classes or -groups not

randomly assigned). To illustrate, a non-equivalent control group

design (a quasi-experimental design) is symbolized as follows:

0 X 0

TheAiscussion that follows builds on both Section I and Appendix

C. The emphasis is on clarifying who will be measured, when they will

be measured, the kinds of measures to be obtained, and how the data

from measurements will be processed and analyzed.

Treatment Groups

In instructional evaluation research, a treatment group is a batch

of people defined by the treatment or instructional program they

experience. Evaluation of alternative treatments implies comparisons

between at least two groups -- one that experiences the existing
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instructional program and one that experiences an alternative to the
existing program. If more than one alternative is being considered
simultaneously, then there will be as many experimental groups as there
are alternative treatments to be compared.

The term, control group, often is used to denote the reference
group against which.the experimental group or groups will be contras-
ted. Perhaps a more descriptive term would be "comparison group," thus
reserving control group for describing true experiments in which one
cad assure insulation of one group from another.

Evaluations of alternative instructional treatments are made to
help guide such decisions as the following:

1. Which approach is better, on the average?

2. Which approach is better for trainees of such-and-such
characteristics?

3. Which approach is most difficult to implement?

4. Which approach is preferred by trainees?

5. Which approach is preferred by the instructional staff?

To provide credible evidence to support conclusions about which
approach is best, preferred, least difficult to manage, or whatever, it
is critical not to "str-ck the cards," intentionally or by accident, in
favor of one rival approach over another. By far the best way to guard
against card-stacking is to assign people to treatments by a random
procedure -- that is, by a procedure that gives evenyone an equal chance
of being assigned to one of the treatments.

Randomization gives each treatment an equal chance of being ap-
plied to any subject (person). However, randomization does not guaran-
tee to balance out natural differences among subjects. If some personal
attribute is known (or strongly suspected) to be related to the depend-
ent variable performance, various straightforward methods can be used
to approximate balance between or among groups on that attribute. For

example, if reading speed is likely to be related to performance on the
dependent variable measure and one has prior measures of reading speed,
all eligible subjects can be numbered from high to low on reading speed
in advance of their random selection for treatment group assignment.
Using an unbiased method of selection, subjects then can be assigned
systematically from highest to lowest to one or another treatment. For
instance, with only two treatments, one might designate subjects for
treatment by the flip of a coin (e.g.,"heads = odd numbers = Treatment
A"). This procedure would tend to balance reading ability between the
two treatments.

With three or more treatments to compare, systematic sampling can
be followed. For example, with three treatments, one wants three
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groups of approximately equal size and average reading speed from the

numbered list generated as just described. One may scan a column from

a table of random nunbers in search for last-place, digits of 1, 2, or

3. The first of these digits found -- 1 or 2 or 3 -- will designate
Treatment A and the second digit found will designate Treatment B;
since both Treatments A and B are then defined, Treatment C is defined

by the remaining number. If the first number found was "2," then

Subject Number 2 and every third number thereafter (i.e., 5, 8, 11, 4,
and so on) would be assigned to Treatment A. Suave systematic proce-

dure satisfies two requirenents: (1) individual assignment to treat-

ment group has been determined randomly and (2) each treatment group
will include approximately the full range on the reading speed measure,
thus essentially equating treatment,groups on reading speed.

Sometimes it is,pot possible to make individual assignments of
subjects to groups -- administrative groupings or natural groupings
must be'left intact. For example, with classroom instruction that is
instructor-paced, it is seldom possible (and may not be appropriate in

any event) to break up the class of students. Now one unit of analysis

becomes the class and randomization mast be applied to,classes defined

by times of day, instructors' names, etc.

Difficult problems arise in the analysis of data obtained from
intact groups.. Such factors as instructor and class group now become

factors in the design -- the comparison is no longer a simple Treatment

A vs. Treatment B comparison between randomly assigned students, but

'Treatment A with Instructor Jones in the morning class vs. Treatment A

with Instructor Smith in tne afternoon class vs. Treatment B with

Instructor Brown in the evening class, and so on. Furthermore, the

characteristics of persons in each class may be systematically differ-

ent (e.g., Instructor Jones has mostly "fast" students and Instructor

Smith has mostly "slow" students and Instructor Brown has,the students

who enrolled last).

Statistical problems can be managed, although not always neatly.
For example, each combination of treatment by instructor bY intact

group can be coded as a unique treatment in a multiple regression

analysis. The interpretation of findings is more difficult than in

simpler arrangements, however, since so many factors likely to influ-

ence the findings are confounded.

If circumstances require that intact groups be used, the principle

of randomization of treatment assignment is no less important. Given

time and resources: it may be possible to repeat the experiment enough

times so that each instructor applies each treatment with several

classes. Larger samples and more replications (repetitions) Usually
turn out to be about the best one can do to balance things out in

experiments that must be carried out with intact groups.

The designation of who uses which treatment with which group in
which replication can still be made by random procedures. It is really

impossible to pay too much attention to randomization. As a principle,
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if a random procedure can be used to decide who experiences what
treatment when, then a random procedure should be used.

Times and Kinds of Measurement

Measurements may be made at many different times relative to the,
period of instructional treatment depending on what the measures are
expected to reveal.

The most important measurement point is that immediately following
exposure to the rival treatments. For example, using the.Campbell and
Stanley notation, a posttest-only control group design would be
symbolized as follows:

R X 0

0

The random assignment of subjects to treatment guards against
systematic bias in the characteristics of subjects, including their
readiness for the instructional treatment. Thus, there may be no
important purpose served by a pretest. The posttest, however, is the
direct measure of effects; this measure should be made as soon as
possible following treatment so that other influential'factors do not
intervene between treatment and measurement of effect.

Sometimes it may not be possible to do.more than estimate the
effects of a variation in treatment on the momentum established by
prior instruction. Such a time series design may be symbolized as

, follows:

,0 0 0 OX0 0 0 0

Measures preceding the experimental treatment establish a trend line or
. norm of progress prior to the experimental intervention. In plotting
measures over time, one might hope to find a disjunction in the trend
line at the tiine when the treatment is introduced. This is a'quasi-
experinental design in which subjects essentially serve as their own
controls. It sometimes is referred to as a "regression discontinuity
model.",

In self-paced instruction, it may be possible to combine the
benefits of time-series measurements with true experiments embedded
within a progression. The following would srmbolize such a design:

0 0 0 0

X 0] 0 0 )

0 0 0

0 0

The single string of observations preceding the bracketed posttest-only
control group design denotes that all trainees experience common
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treatment up to the point at which a random split is made to test an

experimental segment. Following the posttest, trainees my merge again

into a single group. Alternatively, differentiated measurement could

continue for a time as a way of measuring the persistence of effects

from the experimental treatment.

One difficultycin symbolizing ihiS ileSign is the fact that

trainees in self-paded instruction are likely to be distributed at

various stages of instruction. Thus, the representation shown denotes

a subset of trainees'(possibly as few as two) who have reached a

particular stage of instruction. Data would be accumulated over

several such small-sample experiments before final analyses were

carried out.

Finally, it is important to emphasize.that all measures (obser-

vations) of interest do not have to be made at the same time. For

example, one might be interested ln severaT consequences associated

with an experimental treatment, such as trainee attitudes toward the

course, trainee achievement, and instructors' assessments of the

method. One set of measures might be obtained as a time series,

another might be posttest only, and the third variable be measured in a

pretest-posttest pattern.

Data Processing and Analysis

Long periods of data collection and many different measures of

interest can create problems of data storage, retrieval, and proces-

sing, even when the number of cases is small.. When sample sizes become

fairly large, data handling can become a formidable problem. A

complete evaluation plan will include consideration of how data will be

recorded and organized to facilitate retrieval for use in analyses.

Table 4 suggests-a skeleton layout for recording information about

participants in an experimental trial of alternative instructional

treatments. Although Arranged as though one anticipated paper-and-

pencil analyses with a desk-top calculator, it should be easy to see

that the categories translate into instructions for encoding data for

machine storage.

If one hai the benefit of computer support, the skeleton layout

illUstrated in Table 4 may approximate the structure of an analysis

file created by extracting dataNfrom several different special purpose

files or an omnibus data bank. viewet as the structure for an

analysis file, note that many of the illustrative variables defined by

column heads or listed in the footnotes may be irrelevant for any

particular planned analysis. For example, if no use is planned for

Armed Services Vocational Aptitude Battery (ASVAB) scores in an

analysis, then that entry is extraneous..

Table 4 is .simply one of many possible layouts for a subject-by-

variable raw data matrix. Each row identtfies a participant in an

instructional treatment experiment. Each column provides some:piece of
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I.

information necessary for grouping data for analyses or computing
measures of association between pairs of entries. The manner in which
the data are grouped for analysis will depend upon the analytic model
chosen. The array (whether viewed as a spread sheet for paper-and-
pencil tabulation or as fields into which data may be encoded for
machine tabulation and computation) assumes a mdltiple regression
analysis as the most likely statistical model. Reference back to
Section I ("Planned Experiments with Alternative Instructional
Treatments") and to Appendixes C and D may be useful at this point..

S.
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Tabl e 4

SKELETON LAYOUT FOR'CODING OR RECORDING TRAINEE CHARACTERISTICS AND-PERFORMANCE DATA

i

DATA FROM EXPERIMENT

TRAINEE--
NAME r ID

PRE-ENROLLMENT
BACKGROUND I/

SCHOOL
HISTORY 2/

TREATMENT GROUP 4/ PERFORMANCE DATA 5/
PRE-INSTRUCTION

APTITUDE GROUP 1 ... GROUP n

PROFILE 3/

TEST 1 CODE TEST n CODE

ASSIGN
CODE DATE CODE

ASSIGN
DATE

ITEM SCORE

DATE

ITEM SCORE

DATE

11.a.

...... - -
-

'
I/ Examples. Date of btsth, Sex, Race, Ethnic group, Marital status, Home of record, Highest year of school completed, Social Security number, Branch of service,

ASVAB profile, AFSC/MOS, Most recent duty assignment. Pay grade, etc.

21 EAamptas. Data e ;moll:mat for rx.ch course in which enrolled at school or facility.

31 Examples. Reading skills (vocabulary, comprehension, speed), Mathematics skills, Media preferences (projected visual, pnnted, aural), Attitudes, Interests,
Traits (anxiety, curiosity, etc.), etc.

4/ Examples. Identrfies treatment groupmembership (Treatment A group, Treatment B group, atc..) and date of assignment to group. Multiple entries provide
for changes in group membership in multi-stage experiments.

5/ Examples. Tests and other measures (1, 2, ... n/ coded for identity of measure. Cell entnes are f aw item scores and dates of test administrations.

-
,.,
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Appendix P

A THREE-TRIAL EXAMPLE FOR EVALUATING CANDIDATE TEST ITEMS

THROUGH USE DURING ACTUAL SELF-PACED INSTRUCTION
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A THREE-TRIAL EXAMPLE FOR EVALUATING CANDIDATE TEST
ITEMS THROUGH USE DURING ACTUAL SELF-PACED INSTRUCTION

Introduction

This appendix presents step-by-step detail for evaluating candi-

date test items within the context of actual self-paced instruction.

The model for evaluation would fit a situation where a new course was
being tried out, or where several lessons within an existing course
were being revised, and there was need to develop criterion tests for

new or revised segments of instruction. The model also would fit an

established course in which student achievement measurs were being

revised but course content waS unchanged.

The data uSed in the example are hypothetical. For convenience of

illustration, the detailed example has 16 students and eight candidate

test items. In practice, both the number of students and the number of

candidate items should be greater.

Following presentation of the three-trial example, suggestions are
presented for extending the evaluation model to more than three trials.

Scheduling Testing Points

The plan for trials of candidate items must assure variability in

student performance. In self-paced instruction where progress from one

instructional segment to the next is determined by successful perfor-

mance on a criterion test, the easiest way to assure that trainees are

distributed at differing stages of progress is to time the measurements

to occur at approximately equally-spaced time intervals.

The first trial administration should precede the beginning of

instruction; that is, be a pretest composed of all candidate items

before any instruction in the first lesson. The second and third

trials should be about equally spaced in time and scheduled so that the

third or final trial occurs before the first student who completes the

course has been reassigned and departed from the school.

With a new course, estimating these times involves judgment. If

about one-third of all students have completed the mid-lesson before

the scheduled time for the second trial has been reached, try to con-

duct the second trial at about that point. If about one-fourth of all

students have completed the final lesson before the scheduled time for

the third trial, try to conduct the third trial at that time to mini-

mize losses' of students from the trial group.

69 73



WeightinLItem.Response Patterns,

On a simple two-valued pass-or-fail scoring system, there.are
eight possible response patterns for each item that could occur over a
three-trial sequence. Using "P" to denote pass and "F" to denote fail,
these eight possibilities over three successive trials are as follows:
F-F-F, F-P-F, P-F-F, F-F-P, F-P-P, P-F-P, P-P-F, and P-P-P. Some of
these possible pat- terns conform to an acceptable performance and
others do not. The eight patterns may be rearranged and grouped into
at least three classes according to the desirability of their response

4--' patterns as shown in Table A-1.

Tabl e A-1

ITEM RESPONSE PATTERNS ACCORDING TO DESIRED
PERFORMANCE FOR A THREE-TRIAL SEQUENCE

Response Pattern
Response Qualitative QuantitativeTrial Trial Trial

1 2 3 Scoring Rating Rating

F F P 112 OK 3

F P P 122 OK 3

P P P 222 Acceptable 2

F F F 111 Acceptable 2

P F P 212 Acceptable 2

F P F 121 Not OK 1

P F
,
r 211 Not OK 1

P P F 221 Not OK 1

The above ratings reflect two considerations: improvement over
time and consistency of response. A rating scale with more than three
points might be used. For example, the P-F-P pattern rated as 112" is
lesS consistent than either P-P-P or F-F-F, also rated as-"2." In
practical applications, however -- especially in early or intermediate
stages of item development and refinement -- the three-point scale
provides acceptable weights for items to guide decisions about items to
retain, items to revise, and items to reject.

A procedure for using respo%e pattern weights in evaluating items
is shown below in some detail. with small numbers of students avail-
able on which to try out training performance test items, the procedure
is simple enough to be applied with paper and pencil. Obviously, a
procedure such as-the one illustrated in the following paragraphs also
could be analyzed with even less effort through the use of a computer.
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An Illustrative Layout for Item Response Data

Table A-2 shows an illustrative layout with,hypothetical data for

a three-step trial of eight items with 16 students. (As a reminder,

the numbers of items and students have been kept small to simplify the

illustration; in practice, probably many more than eight items would be

tried out and more than 16 students would serve as trial subjects.)

Table A-2

HYPOTHETICAL DATA FOR A THREE-STEP TRIAL

OF EIGHT ITEMS WITH 16 STUDENTS

Response
§:corina Weight

Pattern Fre uenc b Item

tem
a

tem
b

tem
c

tem
d

tem
e

tem
f

tem
g

tem
h

112 3 4 6 3 3 2 2 2 5

122 3 2 1 3 1 1 3 4 - 1

222 2 3 1 2 5 2 4

111 2 - 2 4 1 4 1 1 1

21 2 2 1 3 1 1 3 3 1

121 1 2 2 1 5 1 3 2 1

211 1 3 1 3 1 2 2 3

221 1 1 1 1 2 - - 1 3

Total , 16 16 16 16 1 6 1 6 1 6 16

Weighted Trial 1 2.750 2.688 2.438 2.312 2.875 2.750 2.625 2.938

Means for Trial 2 2.938 2.562 2.875 2.625 2.875 3.000 2.938 3.062

Items by Trial 3 3.625 3.875 3.312 2.875 3.312 3.562 3.500 3.875

Trial

The weighted means by trial for each item are obtained by multi-

, plying the response for the trial by the weight for the respqnse pat-

tern by the frequency of the response pattern and dividing the product

by the total number; i.e., [(Weight)(Trial Response)(Frequency)]/N.

This computation is shown in detail below for Trial 1 on Item a.

Iterh a

Response
Pattern

Pattern
Weight

Trial 1

Response Score

Response
Frequency

Computation

(Wt.)(Resp.)(Freq.)

FFP 3 1 4 3 x 1 x 4 = 12

FPP 3 1 2 3 x l x 2 = 6

PPP 2 2 3 2 x 2 x 3 = 12

FFF 2 1 0 2 x 1 x 0 = 0

PFP 2 2 l' 2 x 2 x 1 = 4

FPF 1 1 2 1 x 1 x 2 = 2

PFF 1 2 3 1 x 2 x 3 = 6

PPF 1 2 1 1 x 2 x 1 . 2

16 44
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The weighted mean for Trial 1 on Item a is 44/16 = 2.750.

The weighted means by trial for each item shown in Table A-2
indicate that seven of the eight items reflect the desired quality of
improvement over time, as illustrated in Section.II, Table 3. Item b
displays a slightly lower weighted mean at Trial 2 than at Trial 1,
thuS departing frmn_the dsired form. Item e has identical weighted
means-at both Trials 1 and 2, but shows an Thcreased mean at Trial 3

and is therefore acceptable.

Statistical Analyses of Item Response Data

Three statistical analyses of the item data are appropriate at
this point to help determine which items to retain in their present
form, which ones to revise, and which ones to reject. More extensive
discussion and examples of these analyses are shown in Appendix B. The
types/of-analyses and the main principles underlying them are as
follows:

1. Determine the homogeneity of the items as a-set and search
for relatively homogeneous subsets within the larger set.
Measurement theory assumes that test item scores are combined
by summing (with or without differential weighting of items)
into a total score. Unless items are more or less homo-
geneous --%that is, unless they "go together" statistically
as well as according to their manifest content -- it makes
little sense to think of the items as comprising a single
test. The fact that an item in a set of candidate items does
not prove to be homogeneous with other items in the set is
not sufficient for reject4ng the item for possible use.
Nonhomogeneity of an item, however, is sufficient reason for
rejecting the item as one of a set of items called a test.
Aif item that stands apart from companionsitems belongs in
another group with new companions'.

Evidence of homogeneity requires data from actual trials of
items with persons like those for whom the test is intended.
The extent to which items "go together" implies correlational
analysis. With a large pool of items, the approach that
requires the least computation is to correlate each item with
a total score made up from the set of items (or from reduced
sets that exclude each itemlin turn). Items that correlate
with the total score also correlate with one another.
Examining patterns of intercorrelations among items is
somewhat more sensitive. This approach is computationally
more tedious, however, for it requires at least (n2 - n)/2
computations instead of n computations (where n = number of
items).

The principle, then, is homogeneity; the means for estimating
it is through part-ilhole or item vs. item correlational
analyses.

0
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2. Estimate the reliability of the set of items and of subsets

of the most homogeneous items. Once sets of items that are

reavnably homogeneous have been identified, estimate the

:length of test required-to achieve a desired level of

reliability.

Reliability is closely related to homogeneity. One approach

to estimating reliability from a single test auministration

makes use of the ratio of the sum of item variances to the

variance in total scores. The other ingredient in that index

of reliability is the nwnber of items.

Errorless test measurement -- perfectly reliable measurement

-- assumes a test of infihite length. The tolerable upper

limit on test length is far short of infinity. In addition,

there is a.practical limit to the number of different items

that can be conceived for most behavioral domains. Even so,

the most direct approach for increasing measurement reli-

ability is to increase the number of items. A procedure for

estimating the numter of ttems required to increase the

reliability of a short test to a higher, desired level is

discussed and illustrated in Appendix B.

3. Examine the performance characteristics of candidate items.

The likelihood of passing an item should be related posi-

tively to time in training or some independent index of

proficiency in the subject matter of the test. In criterion-

referenced measurement in a self-paced instructional environ-

ment, items that do not conform to a monotonic form (i.e.,

"OK" or "acceptable" response patterns from Table A-1)

usually should be rejected.

Estimating Item

Table A-3 shows the results of an analysis to estimate the homo-

geneity of the eight candidate Items, a-h, as, summarized earlier in

Table A-2. Item means by trial are repeated in Table A-3 from Table

A-2. The standard deviations of item responses by trial reflects the

spread of scores around the mean; in statistical jargon, the standard

deviation is the square root of the variance. The figures of greatest

interest in Table A-3 are the correlation coefficients that indicate

how well the items "go together." (See Appendix C for discussion and

examples of correlation.)

Two sets of correlation coefficients are shown in Table A-3. The

larger coefficients, identified in the table as "item vs. total score,"

are based on the hypothetical responses of 16 persons to each item inif

each of the three trials. Each response was weighted according to the

procedure described earlier. Each person's,item scores were then

paired with that person's total score made up of the sum of the

responses to all items. These first correlations are inflated, how-

ever, since part of the total score variation is controlled by the item

itself.
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Table A-3

ITEM4S. TOTAL SCOa CORRELATIONS AS A BASIS FOR
ESTIMATING HOMOGENEITY AMONG ITEMS

Test
Item

. Weighted Standard
Trial Mean Deviation

Correlation Coefficients
Item vs. Item vs. Total of

Total Score Remaining Items

a 1st 2.750 . 0.9682 .4611 .1381
2nd 2.938 1.5194 .5159 > .1709
3rd 3.625 2.1759 .4497 .1041 .

1

b 1st 2.688 0.9164 .4248 .1157
2nd 2.562 1.0588 .0018 -.2464
3rd 3.875 2.1176 .3956 ,.0532

c 1st 2.438 0.7043 .2590 .0140
2nd 2.875 1.6910 .3373 -.07571
3rd 3.312 2.2000 .3349 -.0056

.

d 1st 2.312 1.1022 .4174 .0367
2nd 2.625 1.1659 .4568 .1930
3rd 3.875 2.1176 .3521 .0058

1st 2.875 0.9922 .7848 .5781
2nd 2.875 1.,3170 .4790 .1800
3rd 3.312 1.7219 .4951 .2383

f 1st 2.750 1.0897 .1299 -.2443
2nd 3.000 1.6583 .0911 -.2970
3rd 3.562 2.0300 .0684 -.2558

9 1st 2.625 - 0.9270 .3583 .0377
2nd 2.938 1.8530 .4067 -.0451
.3rd 3.500 2.2079 .4379 .0848

h 1st 2.938 0.8992 .1544 -.1588
2nd 3.062 1.0879 .6545 .4598
3rd 3.875 1.9961 .4043 .0845

Total lit 21.375 2.8696
All f"..frld 22.875 4.1363
Items 3rd 27.938 6.1081

Note: N = lb for all computations. Basic response pattern data
(16 test-takers, 8 items, 3 trials at equally spaced times) are all
hypothetical; computations are for ilustration only.
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The right-hand column of.Table A-3, labelled "item vs. total of

remaining items," corrects for this inflation by correlating each item

response with a sum composed of all theremaining items. As can be

seen, the adjusted part-whole correlations are substantially smaller

and several actually shift from positive to negative in direction.

It is evident from the right-hand column of Table A-3 that only

about half of the eight candidate items show signs of belonging to a

more or less homogeneous set.' Items e and a -look encouraging whereas

Item f rather obviously belongs somewhere else since it is negatively

related to whatithe other items are measuring. For illustration,

assume that Items a, e,a, ind h were singled out as the items to

retain and refine. H5v, -does the homogeneity of that subset compare to

the ;Iomogeneity of the remaining items? Table A-4 provides an answer.

When the total of eight items is split into subsets based on how

the individual items correlate with the total score (see Table A-3),

the meaning of homogeneity among items becomes clear, and the effect of

item homogeneity upon testreliability is evident.

The total of eight items is not at all promising as a homogeneous

test, as shown in the right-hand column of Table A-4. As can be seen,

the sum of variances of responses to individual items is virtually as

great as total:score variance. This leads to very low estimates of

test reliability. The eight items would 'need to be increased to per-

haps several hundred before a test with such low homogeneity could meet

desired reliabilfty standards.

When.Items a, e, ji, and h are singled out as a "subtest," the

situation becomem-Ore promiting-: As a group1 these four items display

total score variance that exceeds item variance by a sufficient margin

for that subset to be considered reasonably homogeneous. Homogeneous,

in this case, is a relative matter -- certainly they are far more homo-

geneous than the full set of eight items., Using the Spearman-Brown

formula to estimate reliability of a lengthened test made up of similar

itens, it appears that a.test of from 30 to 50 similar items would have

a reliability in the range of about .70 to,about .80. (See Appendix B

for discutsion of the Spearman-Brown formula and a detailed example of

its application.) Reliabilities of .70 to .80 are not high by commer-

cial test standards but such a level is quite satisfactory for progress

measures. In short, these four items .provide a foundation on which to

construct some additional measures to enhance measurement reliability.

The residual cf items -- b, c, d, and f -- would be rejected on

statistical grounds as part of a test that ilso included Items a, e,

and h. Item variance for this subset is high relative to total score

variance for the subset. The negative reliability coefficients shown

in Table A-4 are very unlikely to be encountered in actual test'devel-

opment, particularly with achievement measures. In this example, the

negative coefficients are a consequence of the quasi-random pattern of

item responses by persons that were generated to provide data for an

illustration. The resulting example is dramatic but not at all common.
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Table A-4

ESTIMATES OF TEST RELIABILITY BASED ON ITEM AND TOTAL SCORE VARIANCE

Statistic
Subtest of Items

a, e, g, h
Subtest of Items

b, c, d, f
Total of
8 Items

Weighted mean
Trial 1 11.1875 10.1875 21.3750
Trial 2 11.8125 11.0625 22.8750
Trial 3

fotal Score

14.3125 13.6250 27.9375

Varianze
Trial 1 . 4.5273 ' 3.0273 8.2344
Trial 2 11.4023 4.6836 17.1094
Trial .3 19.3398 12.6094 37.3086

Sum of individual
item variances

Trial 1 3.5898 3.7383 7.3281

Trial 2 8.6602 8.0898 16.7500

Trial 3 16.5586 17.9297 34.4883

Coefficient alpha*
Trial 1

Trial 2

.2761

.3207

-.3131**
-.9697** .10Z

Trial 3 .1917 -.5626** .0864

*Coefficient alpha is an index of test reliability based on item homo-
\.geneity. See Appendix B for comment. The equation is as follows:

rkk = (k/k-)) [1 ( / s2)]
t

where
rkk

reliability of test of k items

k = number of items

2
= sum of item variancs

2
s
t

variance of total scores

**
See text for discussion of negative coefficients.

76



Table A-3 (as well as Table A-2) showed that all but one of the

eight candidate test items displayed an increasing monotonic form;

i.e., lowest mean scores-occurred on Trial 1, higher means on Trial 2,

and highest mean scores on Trial 3. By that standard, these items

might be judged as adequate. Unless.an item is homogeneous with other

items in a set, however, the item,should not be thought of as part of a

test for which 'a total score is obtained by summing across items.

The preceding point has been made before but is important enough

to warrant repeating. A single item may be an appropriate measure of

one of the effects of instruction even though it does not prove to be

homogeneous wit)) other potential (or candidate) test itemg. When such

deviant items are used, it amounts to creating a test with a single

item. Sampling theory, as well as.common sense, reminds us that the

average of several measures of something is a better estimate of a

"true" value than is a single measure. The implication, then, is that

other items must be developed that are homogeneous with the original

one if one wishes to increase the reliability of measurement.

Contrasting Item Response Profiles over Trials

When all or nearly all candidate test items display an increasing

monotonic form of responses obtained at spaced intervals coincident

with instruction and there is need to select the best of an apparently

good lot, the "distance" (0) statistic may prove useful. .The dlstance

between profiles for entities a and b (e.g., students a and b, items a

and b) for any number of variaiDes (V) is the square i'iTot ofthe

follb-Wing expression:

D
2

b
= (X

al
- X

bl
)

2
+ (X

aa b2
)

2
+ . . ( )

2

Xak Xbk

For example, assume.that an item performance dharacteristic

defined by the following pattern provided a desired idealized model

against which to contrast obtaine ''d responses. ("Pass" = 2 and "fail'.

1 in the following example, just the preceding

Res onse by Trial

examples.)

Relative

Response Pattern Trial Trial Trial RespOnse

Pattern Weight 1 2 3 Frequency

112 3 1 1 2 3

122 3 1 .2 '2 2

222 2 2 2 .2 1

111 2 1 1 1 2
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Computation of Trial Means: [(Wt.)(Respl)(Freq.)] / N

Trial 1: (3x1x3)4(3x1x2)+(2x2x1)4(2x1x2) / 8 = 2.875

Trial 2: (3x1x3)+(3x2x2)+(2x2x1)+(2x1x2) / 8. 3.625

Trial 3: (3x2x3)4(3x2x2)+(2x2x1)1(2x1x2) / 8 = 4.750

None of the response patterns shown,earlier in Table A-3
corresponds exactly with this particular idealized profile. The "D"
statistic permits the similarity,,between each obtained profile and the
idealized one to be expressed quantitativelj/. In addition, the
idealized profile can be compared to a "chance" profile, where "chance"
(random) is defined by each of the eight possible patterns having the
same frequency. For example, with eight possible response patterns
scored and'weighted as before, the "chance" profile would be as follows:

Response
Pattern

Pattern
Weight

. Trial Means
THal 1 -Trial 2 Trial 3

112 3 2.625 2.750 3.125
122 3

2.22 2

111 2 Illustrative Computation: Trial 1
212 2.

(1+1)3 + (2+1+2)2 + (1+2+2)1 = 21
121 1

211 1 21 / 8 . 2.625
221 1

C.
Ta4le A-5 summarizes the result of a set of "D" computations for

Items a through h and for the above "chance" profile.

The 02 and D measures shown in Table A-5 were computed from the
formula given previously. For example, the 02 value for Item a was
computed as follows before rounding:

D2 . (2.875-2.75)2 + (3.625-2.9375)2 + (4.75-3.625)2 . 1.7539062 .2. 1.754

The D-statistic is a convenient and easily calculated way to
express similarity between multi-point profiles. Usually one or
another of two approaches is followed when using the 0-statistic to
compare or contrast profiles. One approach, such as summarized,in
Table A-5, is to compute a set of distances relative to a chosen
reference profile so that all distance measures are from a common
reference. This allows a ranking or other expression of similarity
between each profile and the reference profile.
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Table A-5

DISTANCE (D) MEASURES FOR PROFILES OF ITEMS a THROUGH h AND FOR

A CHANCE PROFILE CONTRASTED TO AN IDEADZED PROFILE

Profile

Weighted Meansby Trial

Distance Relative

to Ideal Profile Simi- Better (4)
larity or Worse (-)

02 D Rank Than ChanceTrial 1 Trial 2-Trial 3

Idealized 2.875 3.625 4.750

Chance 2.625 2.750 3.125 3.469 1.862 --

Item a 2.750 2.938 3.625 1.754 1.324 2nd

Item b 2.688 2.562 3.875 1.930 1.389 4th

Item_c 2.438 2.875 3.312 /2.820 1.679 7th

Item d 2.312 2.625 2.875 4.832 2.198 8th

Item e 2.875 24875 3.312 2.629 1.621 6th

Item f 2.750 3.000 3.562 1.816 1.348 3rd

Item g 2.625 2.938 3.500 2.098 1.448 5th

Item h 2.938 3.062 3.875 1.086 1.042 1st

Another approach 4s to compute the 0-values between all pairs.

This matrix, oficourse, may include one or more arbitrary reference

profiles in addition to other profiles of-interest.. Aad that approach

been followed.for Table A-5, a 10 x 10 matrix with 100 D-values would

- be displayed. (Only 45 different computations would have been needed,

for the diagonal of the matrix will display "0" and the distance from A

to 8 equals the distance from B to A; thus, (10 x 9)/2 . the number of

different values.)

Inter-Item Correlations Compared to Item Response Profiles

It also should be emphasized that the D-statistic is not a

substitute for a correlation between individual values that have been

averaged to provide profile points, For example, th:! profile points

for item responses are based on the mean of 16 responses at each of

three trials for eight different items. Correlations between item

responses will reflect variability due to individual differences among

persons responding. Thus, a pair of items may not correlate well with

one another but be essentially identical in their profile foha based on

mean values that "wash out" individual differences among persons.

An example -- extreme to emphasize the point -- is provided by

Item a vs. jtem f. The distance (D) between these two profiles was the

smallest of all the pairs of items, thus indicating great similarity

between the two profiles based on trial mean scores. (Inter-item

profile differences (D-scores) ranged from a low of .088 between Items

a and f to a high of 1.258 between Items d and h; the smaller the

nrscor'i, the greater the similarity betwein pro-files.) Note, however,

the crosstabulations of responses by the 16 imaginary test-takers to

these two items, as shown in Table A-6 below.

79 83



,

\

\

\

Table A4

FREQUENCY CROSS-TABULATIONS OF NEIGHTED SCORE
RESPONSES TO ITEM a AND ITEM f FOR EACH TRIAL

Item a

Trial 1

\\

Trial'2 Trial 3
Item f Scores Item f Scores Item f Scores

Scores 1 2 3 4 Sum 1 2 3 4 '5 6 Sum \1 2 3 4 5 6 Sum

6 NA* 1 1 2 3 1 1 1 6

5 NA* U 0

4 2 2 4 2 1 3 2 2 4

3 1 3 1 1 6 2 2 4
1

0

2 2 1 1 4 1 1 2 4 0

1 1 1 2 2 13 2 2 2 6---

Sum 3 3 ;5 5 16 2 7 2 2 0 3 16 5 1 0 5 0 5 16

\

Statistic
Corre1ation-1D" Based on

Trial Item Mean Std. Dev. (a vs. f) Trial Means

1 a 2.7500 0.9682
f 2.7500 1.0987 .1185

1

2 a 2.9375 1.5194
f 3.0000 1.6583

4
-.1736

3 a '3.6250 2.1759
If 3.5625 2.0300 -.2069 1 .0834

NA = Not applicable; 4 = maximum possible score on Trial
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The correlations between items by trial are Tow; for Trials 2 and

3, they also are negative in direction, thus indicating a weak tendency

for a high score on one item to be associated with a low score on the

other item. Simple visual examination of the cross-tabulations, even
without confirmation from the correlation coefficients as descriptive

statistics, affinms that the responses to Item a are not associated

strongly with responses to Item f. The distance (D) statistic, how-

ever, shows that the the item'profiles are very similar.

The correlation coefficients and the D-statistic are complementary

rather than contradictory. The correlations indicate that the two

items are not homogeneous if thought of as companion items in the same

test. Presumably, the items are measuring different things and thus

would not be combined intentionally. The D-statistic shows that both

items conform approximately to a desired item operating form -- that

is, that item performance improves' with instruction. On that standard,

they both may be "good" items but scores from that pair should not be

added together.

Finally, the cross-tabulations in Table A-6 underscore the need

for repeating a reminder -- the number' of imaginary test-takers was

made small (16) to simplify the presentationlpf examples of useful

evaluation analyses. Ideally, the number of persons involved in empiri-

cal trials to evaluate test items would be substantially larger than

16. A generally accepted guideline is that the number of cases

(persons) should be at least five times the number of items being

evaluated to reduce sampling error. The examples, therefore, should

not be taken as models of appropriate sample sizes. .

Extending the Evaluation Method to More than,Three Trials

Several trials provide better, more dependable, indicators of

performance than do only a few trials, just as a test with many items

is a more reliable indicator of ability than a,test with only a few

items. The foregoing Olustration of ways to evaluate candidate test

items with three empirical trials of actual students during a period of

instruction can be extended readily to four or more trials. In most

practical training s4tuations, more than five trials would be diffi-

cult, if not impossible, to arrange. The following paragraphs extend

the logic of a three-trial sequence to ones of four trials and five

trials.

If four trial administrations of candidate test items can be

scheduled at approximately equally spaced time intervals, the number of

possible response patterns will be double the number that were possible

for three trials. (Since the scoring of performance is binary F or

p the rule is 2n where n denotes the number of trials or oppot-

tunities. Thus, 23 = 8, 24 = 16, 25 = ?2, and so on.)
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Weights for Response Patterns from Four Trials and Five Trials

Table A-7 shows the 16 possible response patterns in a four-trial
sequence, arranged according to the judged quality of the pattern for
criterion-referenced measurement. Table A-8 shows the 32 possible
attems and quality ratings for a five-trial sequence.

As was the case with the three-trial response patterns shown ear-
lier in Table A-1, the ratings in both:fables 10 and 11 are judgmental.

Finer-grained scales certainly could be.used, and some might judge the
ordinal position of some response patterns to require *adjustment. The
Weighted Means for chance responsesby trial provide logical validation
of the weights, however. ,As can be seen, a graphic plot of the chance
means for both the four-trial and five-trial sequences would reveal
curves of the desired consistent improvement form.

A summary of response data obtained from four empirical trials may
be arranged in the same manner a:, shown 'earlier in Table A-2. For
example:

Response Pattern Fre uenc b Item
Pattern Weight item a tem Item c Item Item d

1112 5

1122 5

1222 5

2222 4

.2211

Total

Weighted Trial 1

Means for Trial 2
Items by Trial 3
Trial Trial 4

The data summary layout for a five-trial sequence would be similar
except for an increase in possible response patterns to 32 and a
different set of weights.

Weighted Means by trial for each item may be computed as described
earlier for hypothetical datdin Table A-2. When computed, these
values define profile points from which item characteristic curves may
be plotted or otherwise compared..
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Table A-7

ITEM RESPONSE PATTERNS ACCORDING TO DESIRED
CHARACTERISTICS FOR A FOUR-TRIAL SEQUENCE

_le.s torse Patter_T
Qual i tati ve

Rating

Quantitati ve

Rati ngTF-51-1-57fi'F-2---lif- al-3 TrIal -4

1 1 1 , 2 Very good 5

1 1 2 2 Very ,good 5

1 2 2 2 Very good
,

5

2

1

2

1

2

1

2

1

Good
Good

4

4-

2 1 2 2 Good 4

1 2 1 2 Fai r 3

2 2 1 2 Fair 3

1 1. 2 1 -Fair 3

\_,---
_

2 1 2 1 Poor 2

1 2 2 1 Poor 2

2 2 2 1 Poor 2 -

2 1 1 2 Very poor 1

2 1 1 1 Very poor 1

1., 2 1 1 Very poor 1

2 2 1 1 Very poor I

Weighted Means for

Trial Chance Patterns

1 4.0000

2 4.1875

3 4.5625

4 4.7500

Note: 1 Fail , 2 = Pass.
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Table A-8

ITEM RESPONSE PATTERNS ACCORDING TO DESIRED
CHARACTERISTICS FOR A FIVE-TRIAL SEQUENCE

Res onse Pattern Quantitative
Ratingr a ria r a r a rliiS

1 1 1 1 2 8
1 1 2 2 8
1 1 2 2 2 8
1

,

2 2 2 2 8

1 2 1 2 2 7
2 1 2 2 2 7
2 2 2 2 2 7

2 2 1 2 2 6

2 1 1 2 2 5
1 1 2 1 2 5
1 2 2 1 2 5
2 2 2 1 2 5

1 1 1 1 1 4
1 1 ' 1 2 1 4
1 1 2 2 1 4
1 2 2 2 1 4
2 1 2 1 2 4
2 2 2

$

2 1 4

1 2 1 2 1 3
2 1 2 2 1 3
2 2 1 2 1 3

1 2 1 1 2 2
2 1 ° 1 1 2 2
2 2 1 1 2 2

2 1 1 2 1 1

1 1 2 1 1 1

1 2 2 1 1 1

2 1 2 1 1 1

1 2 1 1 1 1

2 1 1 1 1 1

2 2 1 1 1 1

2 2 2 1 1 1

Weighted Means for
Trial Chance Patterns

1 5.59375
2 5.81250
3 6.06250
4 6.50000
5 6.71875
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Recap of Main Steps in the Method

To review briefly, three analyses in the following order are
appropriate in evaluating candidate test items over repeated trials:

1. Correlational andlyses to estimate homogeneity among items,
first considering the items as a whole set and then as

selecte4 subsets.

2. Reliability estimates to affirm homogeneity among items and
to estimate the number of additional items needed to satisfy

desired reliability standards.

3. Item characteristic analysis to assure that items adhere to

the desired monotonic or "consistent improvement" form.

Each of these analyses was described and illustrated in the
example of the three-trial evaluation. Appendix 8 contains further
detail regarding correlational analyses and procedures for estimating

effects of changes in test length.

The toal number of cases needed for acceptably dependable
estimates of item characteristics depends on both practical limitations

and how one defines "acceptably dependable." If only a few students

are availble for the trials of candidate test items, then one has no

recourse but to rationalize "acceptably dependable" as whatever one can

obtain with the small number of available students. If the number of

available students is not_so Small, then a randomly drawn sample of 30

or so students should yield fairly stable estimates of item

characteristics.

A reminder -- the scheduling of item trials should be defined by

clock time rather than by student progress through a self-paced

instructional unit. The primary purpose at this stage of development

is to evaluate items so that "good" tests can be constructed for

evaluating student progress with later groups of students. By

scheduling item trials to occur at approximately equally spaced cime

cntervals prior to, during, and shortly after instruction is completed

for most students, variability in student performance is guaranteed.
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Appendix B

EVALUATING CANDIDATE TEST ITEMS AND DEVELOPING TESTS

THROUGH TRIALS WITH CROSS-SECTIONAL SAMPLES
,
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EVALUATING CANDIDATE TEST ITEMS AND DEVELOPING TESTS
THROUGH TRIALS WITH CROSS-SECTIONAL SAMPLES

Introductton

This appendix describes an approach for eyaluating candidate test
items with samples of persons representing the range of competence or
proficiency in the performance area to which the items apply. The

approach may be used when it is not feasible to evaluate test items
through multiple trials during actual instruction, as described in
Appendix A. Thus, the approach can be viewed as a compleient to the
multiple-trial approach or as an alternative to that appro ch when
multiple trials during actual instruction are not possible.

This appendix also-contains discussion of problems of test reli-
ability, concepts of test validity, and the relation of empirical va-
lidity to reliability. Certain statistical procedures appropriate to
those issues also are illustrated. These porttons of Appendix 5 may be
applicable to the multiple-trial approach to evaluating test items as
described in Appendix A.

Format for Recording Response Data

Table 5-1 illustrates a layout for organizing data from trials of
candidate items with a cross'-sectional simple or samples of persons
like those for whom the items are intende .The.table is arranged to .

show actual responses from persons-fn-the ilple tested. Since no
weighting of responses is necessary with the cross-sectional sample
approach (and hence no need to multiply a response code by a weight),
it is computationally more convenient to use 1. ' to denote a correct
response and "0" to denote an.incorrect one. Wi:d tneM" and
response coding, the mean score '..or an item is the proportion of
correct responses.

All data in this example art hypothe:ical.

Sample Sizes for Persons and Items

No hard-and-fast rules govern the minimum number of candidate
items to be subjected to trial or the minimum number of persons on whom,
the items should be tried. Two generally accepted rules, however, are
that first, the pool orcandidate items should contain at least twice
the number one wishes to retain for final use, and second, the number
of persons should be about five times as large as the number of items
to be tried.,

.
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Table B-1 '

ILLUSTRATfVE LAYOUT FOR RECORDING AND SUMMARIZING RESPONSE DATA FROM
TRIALS OF CANDIDATE TEST ITEMS WITH A STRATIFIED SAMPLE

Prof i c i ency

Stratum
Student

ID

Item f I t4b1 2

2ria--

Admin.

.

. .

-Tit 2nd 1st
Admin. Admin. Admin.

Hi gh 101 0 1 1 0
102 0 1 1 1

. . .

Sub-Total Correct

Moderate 201

_

1

_

1

-

1

-

0

202 0- -----0 0 1

Sub-total Correct
_ - - _

4

,

Low 301 0 0 1 0

302 1 0 0 0

Sub-total Correc,t

TotalCorrect

II t

-

_ _ - _

-C. - -

Note: 1 = correct response, 0 . incorrect response.

,

-
91 .

94

Item n

1 st 2nd
. Admin. Admin.

1 1

1 0

_ _

0 0

1- 0

- -

0 1

1 0

- -
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The practical value of the first rule is obvious; some clndidate
items will not perform well regardless of effoft in initial design and
it is more efficient to discard poor items than to have to design new
ones and arrange more'trials. In Table 13-1, Item n is the last item in
a pool of size n. ,Thus, if the goal is a 10-item Test, n should equal

--20 or more.

P .
, .

1The basis for the guideline ab
iout the total number of persons n

the sample may be'less obvious, Simply put, the rule of ": times
items" provides some protection against taking advantage of chance
(i.e., capitalizing on samPling'errors) during item analysis. Some
authorities consider five to be too small a ratio and argue for the
ratio of:cases to items to be 10:1 or more (see reference 14). The
possibility of faulty inference is always present with sample data, but
in the eind, decisions involve balancing what is feasible against the
risks one is willing to take. Tests constructed from item analyses
based on small.samples are subject to much more fluctuation in their
behavior from time to time than are tests constructed from item
analyses based on large samples.

,

Number of Data Collection Points

The layout shown in Table B-1 is for a test-retest design. Such a
design nat so4 advantages over,a single test administration design.
some of the advantages are (a) averaging two responses to get a better
estimate of "true" performence, (b) correlating First and second
administrations to provide an additional index of measurement reli-
aPility, and (c) holding out a random half of both first and second
administration data to verify results from the other random half. Such
advantages aside, it is not essential that test item trials involve a

. test-retest design. The layout of Table 8-1 is equally appropriate to
1

once-Only measurement.
/

FillialTy, Table B-1 implies that all\data are obtained at the same
time. It is not essential that this be so -- data may be accumulated

1

over time and compiled periodically for analyses. It is important that /

the conditions-for testing be as,nearly alfke as possible from one
/

adminis ration to another which argues against a lengthy period of data
collection. It is entirely reasonable, however, to build up sufficient
numbers of_appropriately selected cases from several independently
conducted test administrations.

rnary Item Response Data for Procedural Example

, To 'provide datOor an extended example and discussion o* proce-
durep fdr evaluating criterion-referenced test items throughithe use of
crosrs-sctional, samples, a set of hypothetical data was constructed for
eight candidate items and 50' testtubjects. Table'B-2 shows a summary
of the resulting frequency distributions by item (1-8), responie (0 or
1), and proficiency stratum (low, moderate, high). (The original 3 x
50 table with random entries oft0 or 1 is not shown, but it v@s organ-
ized in-a focinat similar to.Table
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Candidate
Item

2

Table B-2

FREQUENCY DISTRIBUTION OF RESPONSES TO EIGHT CANDIDATE
TEST ITEMS BY 50 PERSONS ACCORDING TO ESTIMATED

PROFICIENCY IN UNDERLYING ATTRIBUTE

Response*

,

ProficiencyStratum Total

W--FIF5-0-7

26
24

SU

Response vs.
Proficiency 1

(Product moment
correlation)Low -Moderate Higk

1

I 0
1 iTotal

6

12
Tg

6

10

7
14

2

7
.52

.48

,43941.00

, 1 1 6 8 10 24 .48
(.1 0 12 8 6 26 .52 .

1 Total TU TS 7 SU 1.00 .2411

1 8 12 12 32 .64
0 10 4 4 18 .36

Total TU TS 7 SU 1.00 .2671

1 10 8 12 30 .60
. !

0 8 8 4 20 .40
Total 7 TS TS ST 1.00 .1586

1. 6 6 12 24 .48
0 12 10 4 26 .52

Total 7 16" 7 SU 1.00 .3383
_

1 0 12 8 20 .40
0, 18 , 4 8 30 .60

Total 7 7 TS SU 1.00_ .4362
.

7
1 10 8 8 26 .52
0 8 8 8 24 '.48 ,

Total TU
_

TS 7 SU 1.00 -.0467

1 2 6 8 16 .32
' 0 16' 10 8 34 .68
Total 7 16 7 , IT 1.00 .3456

1 = corect response, 0 = incorrect response.
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Visual inspection of the response frequency distributions for each

item hy proficiency stratum is sufficient to indicate that responses to
most items are a function of proficiency level. (This result was guar-

anteed by the samplipg rules followed in generatlng the-data.) The

only exception to the generalization is Item 7 which shows an essen-

tially "flat" distribution.

The right-hand columnof Table B-2.is an aid to visual inspection.
The values shown in that cOlumn are the product-moment correlations for
each 2 x 3 cross-tabulation,of response (scored 0 or 1) by proficiebcY
stratum (scored 0, 1, or 2):. As the coefficients indicate, the respftsc

pattern for Item 7 is clearly unrelated to proficiency and the pattern
for Item 4 reflects only a weak relationship.

Given only the data shown in Table B-2, one could be tempted to
celebrate a modest victory in test item design -- at least six of eight
candidate items show response patterns that support the assumption of
relationship between test item performance and proficiency.

Response Profiles for Candidate Items

Table B-3 converts the frequencies shown in Table B-2 to propor-

tions of people in each stratum who respcoded correctly. To make the

illustration more comparable to Appendix A, a distance (0) statistic
llso is shown as an index of similarity between each profile and an
arbitrarily defined "ideal" response profile. (See Table A-5 and
accompanying text in Appendix A for an example and discussion of the

0-statistic.)
Table B-3

RESPONSE PROFILES FOR EIGHT CANDIDATE TEST ITEMS AND "D" MEASURES

FOR EACH PROFILE COMPARED TO AN IDEALIZED PROFILE

Profile Points , - Proportion of Correct Responses

,by Proficiency Item Item Item Item Item Item Item Item Idealized

Strata 1 2 3 4 5 6 7 8 Profile

High .875 .625 .750 .750 .750 .500 .500 -:5,po .875

Moderate .375 .500 .750 .500 .375 .750 .500 .375 .500

Low .333 .333 .444 .556 .333 .000 .556 .111 .125

Mean Proportion
Correct for
Item .520 .480 .640 .600 .480 .400 .520 .320 .500

Distance (D)
Relative to
Ideal Profile .243 .325 .424 -.448 %273 .468 .571 .396



The correlation coefficients shown in Table B-2 and the D-statis-
tics shown in Table B-3 are related but imperfectly so. (Recall that

the higher the correlation, the strdnger the relatiOnship whereas/the
smaller the D-statistic, the greater the profile similarity.) .When.the,
two sets of indices are compared to one snother, the largest discre-
pancy in rank-preference is for Item 6. Item 6 discriminates very well
at the lower end of the proficiency scale but not so well at the upper
end, thus yielding a poor correspondence to the idealized profile.
Even with that,discrepancy, which could be anticipated from the unusual
response pattern tor Item 6, the two summary statistics -- the corre-
lations and the D-statistics -- tend to reinforce one another.

Combining Items to Construct a Test

- The problems inherent in attempting to measure human-performance

argue for redundancy in measurement; s.everal indices, considered
together, are more likely to provide a dependable estimate of "true"
performance than is a single index. Forthls reason, geasurement
through testing usually means combining several individual items, each
of whin, contributes to an additive total test score. Items may be

weighted equally or differentially, but all tests assume that item

scores will sum to a total test score.

Table B-4 shows how well ihe eight candidate items, considered as

an eight-item test, were related to the independently defined scale of

"proficiency" that the test items purport to measure. As can be seep

in Table 3-4, the sums of item scores do correlate quite well with the

proficiency scale. This relationship can be seen in the frequency
distributioN,the differences in mean scores by proficiency stratum,
and the correlition coefficient5,that expresses the relationship between

the two scales.

Part-Whole Correlations to Estimate Item Homogeneity

Given the evidence from Tables B-2', -3, and B-4, one is tempted

to conclude that the eight items can be ,ombinediinto a single test.

Such a conclusion, however, would be premature. Before combining
subsets of items and calling the combination a test of some attribute,

the homogeneity of the items in the,combination must be examined.

Unless the items that make up a test correlate positively with one
another, the items as a group are not homogeneous. :

If a test is not homogeneous, then more than one attribute is .

being measured. When item scores are summed to create a test score, it
is assumed that each item adds something to the others. Unless items

share a common attribute or factor, it make no sense to sum the item

scores. The resulting sum would.not have a meaningful interpretation.
Criterion-referenced measurement absolutely requires that an obtained

score can be interpreted with reference to a standard of mastery.
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Table B-4

COMBINED DISTRIBUTION OF TOTAL NUMBER OF CORRECT RESPONSES TO
EIGHT CANDIDATE TEST ITEMS-BY 50 PERSONS ACCORDING TO THEIR

ESTIMATED PROFICIENCY IN THE UNDERLYING ATTRIBUTE

Total Number of
Items Answered

-Correctly
Proficiency Stratum

. TotalLow Moderate High

8

7 ,0

6 6

5 6 8 14

4 6 2 12

3 8 4 12

2 4 '4

0

0 2 2

Total 18. 16 16 50

-

Mean Correct 2.66.7 4.125 5.250 3.960

Std. Deviation 1.155 0.781 0.651 1.399

Note: Correlation between proficiency stratum
(scored_0, 1, 2) and number correct . .7621.

With a large pool,of candidate items and many test subjects, an
economical approach tO estimating.homogeneity is to calcillate the
correlation of each item to total score. Items that correlate most
highly with total scores are the "best".items -- they share more of the
vartance.attributable to the common factor among the items and they add
more to the reliability of the test. Thus, with a large pool of items,
a simple.procedure is to rank items from high to low according to the
magnitude of their part-whole correlation coefficients and select items
in blocks from the top down until reliability objectives have been
met. Given reasonable homogeneity in the-set, the number of items
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needed will depend largely on the reliability one wishes,for,the test.
(How to estimate reliability will be discussed shortly.)

The example used in this report is limited fb eight items ana 50
cases -- scarcely a "large pool of candidate itens and many test
subjects." Because the number of items is small, the correlation
between an item and total ,score yin be inflated since each itein also
is part of the total and therefore is being correlated with itself as
well as with all other items. To correct for this, each item is corre-
lated with the test score from the other items.

ye ,
Table B-5 shows the results of such a procedure for the eight

candidate items. Adjusted part-whole correlations ,are shown as the
bottom row of the table. All the correlations re low. Most signifi-
cant, however, is the fact that five of the eigh coefficients are
negative. Obviously, the set of eight items is nb a homogeneous one.*

If the adjusted part-whole correlations shown in Table B-5 were
teken,as the only index of homogeneity, then Items 5, 4, and 2 would be
selected as a relatively homogeneous set, and the remaining items would
be discarded. Three items are not likely to make a reliable test,
however, so the only recourse would be to develop.new items against the
model of the few that appear tojefine a homogeneous set and repeat the
trials of test items with a new set of candidates. (Recall the rule
that the pool of candidate items should contain at least twice the
number desired for the final test.)

Itemlntercorrelations to Estimate Item Homogeneity

?

The illustrative set.of eight candidate items is mnall enough to
'permit an easy example of a more refined approach to the search for
honiogeneous sets of items. The part-whol ?. correlation approach is a
substitute for examining the patterns of intercorrelations among items.
With only eight items in the set, the matrix of intercorrelations is
well (i.e., (8x7)/2 = 28) and examining the patterns is informative.

a

The original item score matrix on which the illustration is based --
50 cases by eight items -- was constructed loky drawing odd numbers
(odd = 1) and even numbers (even = from a random number table.
Sampling ratips differed slightly by proficiency stratum to assure an
overall pattern similar to that Shown in Table B-4. No effort was
-made to assure intercorrelations among items. Considering the.manner
in which the score matrix was generated, therefore, it is not sur-
prising that the adjusted part-whole correlations center near zero.
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Table B-5

ITEM vs. TOTAL RESPONSE DISTRIBUTIONS BY 50 PERSONS ON
EIGHT CANDIDATE TEST JTEMS

Frequency b'y Response to Item Vcording to Total Score*

7 8
N

8-Item Total 1 _ 2 3 - . 4 5 6

Score . Freq. 0 1 0 1 0 1 0 1 0 1 0
t

-8 0 -

7 0 - -

.,

6 6 - 6 2 4 2 4 2 4 6 2

is

5 14 8 6 4 10 4 10 - 14 6 8 8

4 12 4 8 6 '6 2 10 6 6 6 6 6

3 1 2 8 4 8 4 6 6 8 4 8 4 8

2 4 2 4 2 2 2 . 2 4 - 4

,

0 -2. 2 - 2 - 1 *- 2 - 2 - 2

Total ' 24 26 26 24 18 32 20 30 26 24 30

Mean Percent Total
Items Correct 44 55 42 57.. 43 53 40 56 41 58 45

1 0 1 0 1
0

- -

4 - 6 4 2

6 6 8 6 8

6 8 4 10 2

4 6 6 4

2 2 4 ,

- 4 - 2

20 24 26 34 16

56 44 55 46 56

Percent
Passing Item 52 48 64 60 48 40 52 32

'CorrelatIon:
Item vs. Sum of
Remaining Items -.043 0.078 -.069 .104 .145 -.037 -.043 -.071

1 = correct response, 0 = incorrect response.

4

'98 /



4
04.

8

Table B-6, shows the intercorrelatioris between all pairs of the

eight items. The column and xow headings in thexmatrix are arranged to

highlight the pretence of three clusters ofitems:

1. One.cluster of fairly homogeneous items is composed of Items

2, 4, 5,..and 7. The adjusted part-whole correlations shown

earlier in Table B-5 identified inly Items 2, 4,.and 5 as

apparehtly homogeneous. IteM 7 belongs with this set statis-

tically for it correlates positively with each of Items 2, 4,

and 5 and correlates negatively With all the remaining iteths.

(Item 7 might be rejected ow other grounds, however. Recall

from Table B-2 that it did not discriminate by proficiency

stratd.)

2. A fairly strong two-item cluster consists of Items 1 and 3

(the bottom right corner of the matrix in Table B-6). Item 3

correlates positively only With Item 1, and Item 1 correlates

more strongly with Item 3 than with any other item.

3.. A third two-item cluster composed of Items 6 and 8 is out-

lined in the center.of Table B-6. This is a weaker cluster

than the other two, but a legitimate one nevertheless.

Table B-6

CORRELATIONS AMONG EIGHT CANDIDATE TEST ITEMS

Candidate Test Items

Items 4 5 0 2 7 8 0 6 3 1

4

5

2.

7

8

6

3

131 196 035 -167 -102 -131'

294 199 122 -144 033 -113 -038

131 199 122 -144 033. -113 , -038

196 122 122 -028 -196 -053 -282

035 -144 -144 -028

-167 033 033 -196

-102 -113 -113 -053

140.

140

-021 -068

1 -131 -038 -038 -282 -028 131

-021 -028

-068 131

280

200

I 00

Note: (1) Decimal; omitted from coefficients.

(2) Product-moment correlation coefficients computed from

formula for the fourfild point or phi coefficient'.
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Table 8-5 demonstrated that the eight candidate itemsvere not
Opogeneous. Although performance on the items (with the aliparent
exception of Item 7) correlated positiyely with the global quality of
"proficiency" (see Table B-2), this global quality is not well defined
by a single set of measures.

0Having distovered that the eight items as a set were not tlfg=
geneou, the intercorrelations among itbms shown in Table B-6 helped
identify three fairly homogeneous subsets bf items. These three sub-
sets can noWrbe looked at more closely to help guide further test
development. One serious problem in criterion-referenced measurement
now can be avoided -- that of defining the mastery criterion for a
segment of instruction as soma fraction of a set of test items without
first establishing that the set of test iteths is homogeneous.

Determining Tet Reliability from Item Hmo9eneity

Frequent reference has been made in the text to the notion of
measurement reliability. Reliability means that the measurements aro
repeatable within a tolerable range of fluctuation. If two appro-
priately sized'samples of people, driwn randomly from the same popula-4,
tion, were'to take the same test under similar condftions, the results
will be very similar if the test is reliable. 41. v

Three basic approaches are available for estimating the reliabil-
ity of tests:

el. A test-retest procedure in'which results at one tj4e are
correlated with results at another to provide a çôefficient
of stability.

2. -A porallel-form precedure in which two closely,comparable
versions of a test are administered at a common time and
corvlated with one another tp provide a coefficient of

0 equivalence.

3. An internal-consistency iwocedure whidh provides a good
approximation Of the parallel or equivalent form procedure
and also yields a coefficient of equivalence.

It can be shown thit the reliability of a sqmpleiof test items is
determined by the number of items and the average correlation among
items. Without attempting to prove this assertion, the following
equations can be used to. estimate the reliability of a test of any
qength based on the internal structure of the test., Equation (1) is
referred to as "coefficient alpha" and is the more general form.
Equation (2) is a special case of Equation (1) for tests composed
entirely of dichotomous items; Equation (2) is referred to as "KR-20"
(for Kuder-Richardson Formula 20).

0
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E
(1). rkk,= 17 (1

. sy

"(2) rkk (1 12T-1)
sy

Definitions: rkk = reliability of test of k items

= number of4tems

s.
2

= variance of item i

2
s = variance of sedres on the total test

pi = proportion passing (scoring "1T) an Item i

- pi (proportion not passing)

Z =sigma, standing for he operation "the sum of."
Precise notation would be

%ON

1=1

meaning "the sum of k values beginning with i=1
and endinwith

Applying either equation to test data is easy, especially for
tests that are, scored dichotomously (e.g., pass .= 1, not pass = 0) so
-that Equation (2) applies. References 10 or 14 show the computation
of total score variance. The procedure also is illustrated below with
an example from the...eight candidate items used, in the illustration
preceding this point.

Table B-6 -- the matrix of item correletions -- indicated three
clusters of relatively homogeneous items. From the full set of item
scores by person (.for brevity, not included in this report but sum-
marized as Table 8-2), the following frequency distributibn ,can be
tabulated to show total scores for 50 persons on.a test composed of the
largest cluster, Items 2, 4, 5, and 7:

104
101



--

Tottl Score Freo*ncy
*2

'. (X) " (f) Xxf X xf
.

-1 28

. , o
; " 4 , 8 32

3 10 30
.

2 . 16 A 32

1 10 10

0 6 o

Total 50 104

90

64

10
.

292

Mean = 404/50 = 2.08 = 52%

Variance = (292/50) - (104/50)2 =.1.5136

The proportion passing and not passing Items 2, 4, 5, and 7 can be
read directly from Table B-2. Thus, pq = (.48" x .52) + (.60"x .40)
+ (.48 x .52) + (.52:x .48) = 0.9888.

Values can now be substituted in E uation (2) to estimate the
reliability of a four-item test composed of Items 2, 4, 5,.and 7:

.

rkk = (4/3)[1 - (.9888/1.51)] = (4/3)(1 - .6533) = .4623

-Table 8-7 shows the result,ifif similar computations for three
subsets of thea,eight candidate tvt items and for the entire set.

Table B-7 illustrates rather dramatically how reliability can be
increased by grouping items into more or less homogeneous sets.
Considered as a whole, the eigh candidate test items are a catchall
collection; the overall reliability coefficient of .0187 affirms their,
heterogenei ty.

a

Lest there be arty doubt that the eight candidate items should be
.separated into separate clusters, consider tht correlations between
scores on i tem .clusters i n the fol 1 owi ng summary :

Cl usters

Composed of Clusters Composed of Items
Items 2, 4, 5, T 1, 3 6, 8

g
2, 4, 5., 7 -.2207 .-.1 549

, -.2207 .0085

6, 8 -.1549 .0085
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Tabl e 43-7

RELIABILITY ESTIMATES FOR THREE SUBSETS AND THE WHOLE SET OF

.
EIGHT CANDIDATE TEST ITEMS 0

0

Response Frequency Distributions

Items
All Items

Total Score .2, 4, 5, 7 Items 1, 3 Items 6, 8 (1-8)

8 -

7

6
- 6

.

5
14

4 8 - 12

3 10
,.. 12

2 16 20 8 4

. 1 1 0 18 20 -

y

Total 50 50 .
50 50

Mean
N %

-Variance

4' r,
2., pq

(KR-20) r
kk

2.08 1.16 0.72 ' . 3.96

(52%) (58%) -- (36%) (49.5%)

1.5136 0.6144 0.5216 1.9584

0.9888 0.4800 0.4576 1.9264

.4623 .4375 = .2454 .0187

, If a:similarly
heterogenebus 'bitch of items were used as a crite7

rion test for a segment of instruction to which some general rule was

applied such as "X% correct defines acceptable mastery," diagnostic

interpretation of the total score would be impossible. For a total

score of a test to make sense, the items that comprise that test must

be reasonably homogenpous. , If the items are reasonably homogeneous,

and there also are enough items, then the,measure defined by number or

percent correct also will be acceptably reliable.

Reliability does not guarantee validity, but reliability is a

necessary condition for validity.
A

Test Validity and Its Relation td Reliability

The preceding analyses, applied to provide concreteexamples of

ways to evaluate and refine test items and to construct tests, have

shown that homogeneity,among
items results in more reliable measures.

,
The analyses also have demonstrated an approach for sorting a collec-

tion of heterogenous items into more homogeneous subsets. Because

0036
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these anAlytes were performed on a limited'amount of data, the apparentresult is-three very brief "tests" -- one with four items and two with-
two items each -a that are made up of relatively homogeneous items butaremuch too short as they.stand to provide acceptably reliable
measurement; Before examining ways to decide 'how much long& the testsshould be, it is instructive to consider the relationship betweenreliabilf,ty and valiaity ormeasukment since, In the,end, validity ofmeasurement is the ultimate concern.

In the Most general' senie,
a meaSuring instriiiiient is valid to theeAtent that it does what itis intended to do. Validity is absolutely

specific .to purpose and application: The concept has meaning only withreference to the purpose of the measurement to which the conceptapplies.

Types of Validity

'Convention recognizes three categories of validity: contentvalidity, criterion-related ialidity, and construct validity:

1. Conteht validity requires that the behaviors demonstrated intesting be a representative sample of the,behaviors that
define the objectives of a,program or-program element, such
as a unit or course of instruction.

In the context of
instruction, content validity often' is called "curricular

. validity."

2. Criterion-related validity expresses,the extent to which
scores on a measure relate empirically to scores on an
external criterion. For example, when scores on a.paper-and--
pencil test about steps in a trouble shooting routine are
correlated with the time required or,errors committed in
actually performing a specified trouble shooting routine, the
correlation coefficient expresses the criterion-related
validity of the paper-and-pencil test for thatroutine. Whena test is given,and external

criterion rerformance also is
measured at about the same time, the relationship between thetwo measures is referred to as the test's concurrent valid-ity. When the criterion peiformance is more remote in time,such as "success on the job" in relation to "success in
training" (as measured by an examination score or total time
to the instructional criterion), the relationshipAis cAlled
predictive.validity.

3. Construct validity refers to the degree to which test scores
allow.inferences about underlying qualities or traits. For
example, claims of construct validity for,a test of "anxiety"

, .would Tequire'evidence that persons scoring in one direction
on the test were more likely to display both physiological
and psychological indicators of apprehensiveness than were
persons scoring in the other direction on the .test. Con-
struct validity usually is estimated from patternsof
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relationship; that is, scores on the measure in question
should be related to other scores on theoretically relevant

measures (convergent evidence) and also should not be related
to other scores on theoretically unrelated measures (discri-
minant evidence).* .

Much more extended discussion df the concept of validity will be
found in references 4.3, 6, 10, and 14*.

In training directed toward developing knowledge, skills, and
attitudA appropriate to effective performance on a job, the classes of
measurement validity'of greatest interest and importance are content
validity and predfctive.validity.

,

\\, 1. Is the content of each test a full and fair representation.of
the substance of instruction that the test purports tc,
measure?

2.' Does test performance following aosegment of instruction
. effectively identify persons who are prepared to undertake

the next segment of instruction?

3. Does the aggregate of performance on all tests throughout
instruction effectively identify people who will perform
satisfactorily oR the job toward which the trainino is
directed?

*Limits on Empirical Validity:

Although validity, in one more forms, is the most critical
quality of a test, the limits to empirical validity (duch as concurrent
and,predictive'vatidity) are determined by the reliability of the mea-
sures irivorved.4 It can be shown that the upper limit of a correlation
coefficient between two variables is defined by:

r = r 1/ r r
xy tt XX yy

Where: r
xy

= correlation between variables x and y

r
tt

= true relationship between x and y

r- rxx = reliability'of predictor variable x

r
YY

= reliability of criterion variable y

It follows from the preceding equation that the obtained cor-
relation tisetween a 'predictor variable and-a criterion variable -- the
predictive validity coefficient -- cannot exceed the square root of the
least reliable measure. Expressed in the form:

rtt = ru / A/ r r
xx yy

1 05
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the equation is called the "correction for attenuation..° The practical

u,..e of the equation is to hefp point the way toward improvement of
prediction.

Strategies for Increasing Test Reliability

Consider agaiethe example of +he eight candidate test items.
"When we abandoned the candidate items to discuss some basic notions

' about validity Old its relationship to measurement reliability, the
following points ha0 been established:

1. The eight items couT1 be broken into three fai4\.ly hothogeneous

clusters; .

2., Each cluster was negatively related or unrelated to the other
clusters.

3. The reliabilities of the three clusters of items, when consi-
dered as tests, were low.

We now can ask and answer two practical questions:

.What can be done to increase the reliability of the three

2.

Table
answers to
ficients -
cation and

brief tests (i.e., the three clusters of items from the set
of.eight candidate items)?

How much effort should be invested in attempting to increase
measurement reliability?

B-8 expand's an earlier tabulation and sets the stageifor
the above questions., Table B-8 shows six correlation coef-
- each item cluster with the overall "proficiency" classifi-
each item cluster with the other clusters.

CORRELATIONS
PROFICIENCY-SCALE

Proficiency
'

Categories

Table 8,-8

OF ITEM CLUSTERS WITH THE
AND WITH EACH OTHER

Proficiency Cluster A Cluster B Cluster C

(0, 1, 2) .2795 .4436 .51 91

Cluster A
(Items 2, 4, 5, 7) .2795 -.2207 -.1549

Cluster B
(Items 1-, 3) .4436 -.2207 .0085

Cluster C
(Itens 6, 8) .5191 -.1549 .0085
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The correlations shown in Table B-8 are derived direatly from the

same set of hypothetical data summarized earlier in Table B-2. For

example, the two-way Irequency tabulation for the correlation between

the proficiency classification and responses to Cluster B (items 1 and

3) is as follows:

Cluster B (Items 1, 3):

Proficiency Number of Items Correct

Category 0 1 . 2 Total

High (2) 2 2 12 16

Moderate (1) 2 10 4 16

Low (0) 8 6 4 18
--r.

Total 12 18 20 50 r . .4436
xy

The intercorrelations in Table B-8 allow the computation of first-

order and second-order partial correlations of interest, i.e., the

correlation between two-variables with the influence of one or both of

the remaining two "partialled put" or controlled. First-order and

second-order partial correlations are shown below in Table B-9.

The first-order partial correlations in the upper portion of Table

B-9 are the relationships between pair,s of variables freed from the

influence of a third variable. For example, the partial correlation

between the proficiency scale and item Cluster A scores, freed from the

influence of Cluster B, is .4317. This coefficient, symbolized

rlip, may be contrasted to the simple correlation of .2795 between

proficiency and Cluster A shown earlier in Table 13-8. The smaller

simple correlation coefficient of .2795 reflects the negative relation-

ship between Clusters A and B and between Clusters A and C which influ-

ence the relationship of Cluster A to Proficiency. These inter-cluster

relationships were shown earlier in Table 13-8. .

The firgt-order Oartial.correlations supply the bases for comput-

ing the second-order partial correlations shown in the lower portion of 11

Table B-9. The second-order partial correlations.are relationshins

between each of the Clusters A, B, and C with the proficiency scale

when the influence of the other two clusters has tseen removed. We will

take second-order partial correlations as the best available bases for .

estimating "true" relationships of each cluster score (as a predictor

variable) to proficiency (as the criterion variable). A, "true" rela-

tionship, in measurement theory, implies a hypothetical measuring

instrument of infinite length and therefore of perfect reliability.

We will use the coefficient of .6459, sAibolized by rpmx, as an

estimate of the "true" relationship between the proficiency scale.and

c uster A scores.
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Table B-9

FIRST-ORDtR AND SECOND-ORDER PARTIAL CORRELATI9NS FOR.PERFORMANCE
CLASSIFICATION SCORES AND ITEM CLUSTER SCORES

Partial

ebrrelations

First-Order

.%

,

Variables
Correlated

Proficiency v.
Clutter A

Proficiency v.
Cluster A

Proficiency v.
Cluster B

Proficiency v.
Cluster B

Proficie* V.
Cluster C

Variables
Controlled Notation Coefficient

Cluster B r
PA.B' .4317

Cluster C r
PA.0 .4262

. Cluster A r
PB.A .5396

Cluster C r
PB.0 .5139

PC.A .5929Cluster> A r

Proficiency v. Cluster B rPCB .5751
Cluster C

,Cluster A v. Cluster C r
AB.0 -.2220

'Cluster B

Cluster A v. Cluster B r
AC.B -.,1569

Cluster C

,

Cluster A r
BC.A -.,0267

,

Cluster B V.

Cluster C

Second-Order Proficiency v. Cluster B, r
PA.BCCluster A ,, Cluster C

Proficiency v.
Cluster B

Proficiency v.
Cluster C

Cl uster A,

, Cluster C

Cl u,ster A,

Cluster B

/

.r
PB.AC 6899

.r
PC.AB 7215

,..

.. Note: Proficiency categories scoi;ed as follows: High = 2, Moderate
= 1, Low = O. Cluster A composed of Items 2, 4, 5, 7; Cluster
B composed of Items 1,1d; Cluster C composed of Items 6, 8.

w
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Setting Test Reliability Targets

The develOpment of the example of steps in evaluating candidate
test items and constructing homogeneous tests has now reached the point
where a key telt development strategy question can be asked,and
answered:

Q: Give rxy, howreliable would the criterion (y) and the
predictor (x) have to be in order to achieve the estimated
true relationship (rtt)?

A: Define various realistic target values for the reliability of .

the criterion measure (ryy). Substitute these values,
along with estimates for an obtained correlation between
predictor and criterion (rxy) and for the true relationship
between predictor and criterion (rtt), in the equation for
correction for attenuation. Solve the equation for reli-
ability.of the predictor. measure (rxx)..-

Table B-10 shows the results of such an exercise. The values
shown in the body of Table B-10 are reliabilities (rxi) of the
predictor tests made up of items such as those in Clusters A, B, and C
that would satisfy the following form of the "corraction for attenu-
ation" equation: '

r = r
2

/ r
2

(r )

xx xy tt yy

Table B-10

ESTIMATED RELIABILITY STANDARDS (rxx) FOR TESTS COMPOSED OF
ITEMS LIKE,THOSE THAT DEFINE CLUSTERS A, B, AND C

. Y.Z

Cluster Ixy .80

A .65 .28 .309 .265 .232
(Items

2, 4, 5, 7) .43 .729 .625 .547

.69 .44 .678 .581 .508

(Items

1, 3) .54 N.A. .875 .766

.72 .52 .869 .745 .652

(Items
5; 8) .58 N.A.* .927 .811

N.A. - Not appl icable; > 1.0. 212



The values for rtt in Table B-10 can be recognized as rounded
versions of the second-order partial correlation coefficients from
Table B-9. The smaller values for rxy are rounded versions of siMple
correlations between predictor and criterion from Table B-8. The
larger values for rxy arerounded'versions of average first-order
partial correlations from Table B-9. These values for rxy are merely
rough guesses about what rxy might be as a,function of varying reli-
abilities. Values for ryy are assumed achievable target values for
the reliability of a criterion measure of proficiency.

Estimating Test Length Needed for Desired Reliability

Examination of Table B10 suggests that predictor measurl reli-
ability (rxx) of .80 would exceed most of the values in theAable
while roughly approximating the rest. With this decision, a second
test development strategy question can be asked and answered:

Q: tibiv many items must there be in a homogeneous test of the
attribute measured by 3ach cluster of candidate items for
sUch a lengthened test to have a reliability of .80?

A: Use the Spearman-Brown formula for the reliability of a
composite test having parallel components.

The general Spearman-Brown formula is usually expressed in the
following form:

Kr
11 .

-RKK

1. + (K-1 )r
1 I

where R
KK = Reliability of the lengthened (or shortened) composite test

K = Multiple of the number of testitems in the original test
to be lengthened (or shortened)

= Reliability of the original test to be lengthened (or
' rll

shortened)

In he above fonm, the formula is a handy one for the question,
What if we change the length of the test of n items with reliability
r11 by a factor'of K (i.e., add or subtract i items so K
The formula may be rearranged to solve direcTly for K, howeveF, if one
has an estimate of a target value for RKK. In that form, the
Spearman.Brown formula becomes:

K = R (1-r
11

) / r
11

(1-R
KK

)

Solving the Spearman-Brown formula for K, using values from
previous compUtations or alialyses for Ili and RKK, produces the

110
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findings shown in Table B-11. In the computations for Table 13-711, the

input values for r come from the bottom row of Table B-7 where they

were identified as kk computed from the Kuder-Richardson Formula 20

(KR-20). The input values for RKK come from decisions following

examination of Table 8-10 a, RKK for all computations in Table B-11

equals .80, the target value decided upon for reliability of the

predictor tests.' (In the notation of the equation.for correction of

attenuation, the equivalent term was denoted as rxx).

Table 8-11

MINIMUM NUMBER OF HOMOGENEOUS ITEMS NEEDED IN LENGTHENED

TESTS OF ATTRIBUTES MEASURED BY CLUSTERS A, B, AND C

FOR EACH TEST TO HAVE A RELIABILITY OF .80 OR MORE

Test Item Clusters
--A-- B C---

KR-20 reliability of original item set 11'11) .4623 .4375 .2454

Desired reliabilitS', of lengthened test (rKK) .8000 .ig000 .8000

Number of items in set to which r
11

applies 4 2 2

Multiplier for number of items (K) 4.6524 5.1429 122999

Total items needed in lengthened test 19 11 25

(K x no. original items, rounded upward) ,

Reca of Main Ste s and Decisions in Test Develo ment for Criterion-

e erence Measurement

The test development agenda is now clear. The implications of

analyses to this point may be summarized as follows:

1. The original set of eight candidate test items appeared to

differentiate reasonably well among levels of overall profi-

ciency to which the test was directed. The individual items

were not equally strong in their ability to differentiate

among proficiency levels, as was shown in Table B-2. How-

ever, when item scoees were summed to a total score, the

eight-item test looked reasonably good, as shown by Table

B-4. Such an evaluation is not warranted, however, until

homogeneity of the test items is examined. .Without demon-

strating homogeneity among the items, the test must be

considered a catchall collection that cannot be useful for

differential diagnosis of proficiency.

2. The first analysis of test item hmnogeneity was to correlate

each item score with the total score -- literally, to corre-

late each item with the sum of scores of all the remaining

co

,
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items. This analysis was shown in Table 815 and demonstrated
that the items were not homogeneous. Based only on the part
vs. whole analysis, only three of the original eight items
(items-2,-4, and 5) would be retained. If the pool of candi-
date test items had been substantially larger than eight, the
-part vs. whole analysis would be an efficient way to screen
items since it involves only as mary indices as there are
items.,

3- A more sensitive analysis of homogeneity among items involves
correlating each item with all others and examining the pat-
tern of intercorrelations for subsets of items that appear to
go together. This requires more computations -- (n2-n)/2,
where n = the number of items -- but the computations. are
simple when items sre scored as "pass" or "fail" (1 or 0) and
pose no real burden if data are encoded for-computerized
computation. Intercorrelations among items were shown in
Table .B-6 and revealsii three.clusters of relatively homo-
geneous items: Clust r A (Items 2, 4, 5, 7), Cluster B
(Items 1, 3), and Cluster C (Items 6, 8).

4. The discovery of three fairly homogeneous clusters of items
challenged the assumption that "proficiency" is a unitary
quality. Correlations of cluster scores with one another and
with the proficiency score, as shown in Table B-8, suggest
that "proficiency" may be made up of three components or
factors. This impression was strengthened by the partial
correlation analysts sutmiarized in Table B-9. These analyses
suggested that three tests are needed rather than one, or a
test for each apparent component of proficiencY.

5. Two important principles of measurement were asserted without
complete proof but can be proved: (a) measurement reliabil-
ity is a joinViunction.of the homogeneity of items that
comprise the measure and the number of items in the measure,
and (b) the upper limit of empirical validity is bound by the
reliabilities of the measures involved. The question of how
long a measure should be -- that is, how many items it should
include -- depends largely on the standards of reliability
arid the limits of predictive validity that one wishes to
achieve.

There are both practical and statistical limits to the pre-
vious assertion, of course. First, as the correction for
attenuation demonstrates, the upper bound of predictive,
validity is a function of the reliabilities of measures of
both predictor and criterion and also of the "true" relation-
ship Vetween them. Any "true" bivariate relationship, _in
measurement of human performance, almost certainly will be
considerably less than 1.0 simply due to the number of
different factors that influence performance. For example,
for want of a better basis for inference, a coefficient of



.65 was posited as an estimate of the upper bound for a
'correlation between a test composed of items like Cluster A
and an'independent measure qf the dimension of proficiency to
which such a test applied.

As shown in Table 8-11., the Cluster A-type test must be
increased to at least 19 itemi if it is to reflect a
reliability of .80. With a reliability of .80 for both
predictor and criterion, one could anticipate a correlation
of about .52. If the predictor test were increased to some
89 equally homogeneous items, a reliability of .95 would
result. That increase in reliability, purchased at the price
of an additional 70 test items beyond 19, might increase the
obtained correlation between predictor and criterion from
about .52 to about .57. The practical gain would not be
worth the effort.

The test development°agenda, then, calls for two complementary
efforts: first, to construct additional items that are homogeneous
with those represented 'by item Clusters A, B, and C from the original
candidatejtems and second, to refine, and expand as 'necessary, inde-
_pendent measures of the criterion performance.

Far internal validation of a training program; the overall crite-
rion may be tomeweighted combination of several indicators, st.ch as
"measured time to tubardinate cdteria," "number of attempts to sub-
ordinate criteria," ratings by instructors of practical work, self,

,ratings by trainees of confidence in their mastery of the training
content, and any other behavioral inditators that are accepted as
differentiating among students.

For external validatton of a training program, the criterion must
be some weighted combination of indicators of how well a graduate of
the training program performs on the job, because training, in the end,
is effective only to the degree that it contributes to on-the-job
competence.

Development of predictor measures is more straightforward than
development of criterion measures, and is defined by the number of
items needed id the predictor tests (as shown in .able 8-11). Develop-

ing additional items that are homogeneous with those on which the
analyses were based may prove difficult; in some areas, it may not be
possible to create enough new items to meet the quantitative goals and
also satisfy the requirement of homogeneity.

If either the quantitative requirement or the homogeneity require-
ment must be,compromised, the quantitative goal is less important than
the requirement for item homogeneity. Without homogeneity among the

items that comprise a measure of performance, simply summing the scores
to a total score will not make sense. Instead, homogeneous subsets
should be treated as subscores in a criterion profile, and criterion
perfarmance should be defined in tends of the profile rather than
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according td a summation across. items. For example, if a criterion
test were composed of three subtests similar to'Clusters A, B, and C,
the criterion performance might be defined as passing X% of items from
Subtest A and Y% of items from Subtest B and Z1 of items from Subtest C.

Without a_ differentiated definition of the criterion performance
in training for a lesson, segment, unit, or block of instruction,
attempts.to devise differentiated treatments to best fit,learner
aptitudes is almost certainly doomed to failure or, at best, very
ipconsistent success.,

.
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Introduction

REGRESSION ANALYSIS IN TME4EVALUATION OF
INSTRUCTIONAL TREATMENTS

I.

This report cam only introduce some of Ae details that must be
considered in performing a multiple regression,analysis of data from an
instructional treatment experiment designed to search for aptitude-by-
treatmnt interactions. In this appendiA, three topics basic to such
an analysis are presented:

1. An overview of the idea of regression analysis, beginning
with simple regression (two variables) and extending by
analogy to multiple regression (thre# or more variables).

2. How to create variables by coding so that 'inter-group
contrasts can be made from regression analyses.

3. How to represent aptitude-treatment interactions in a
multiple regression model.

ghe appendix closes with references to packaged statistical
programs for computers and to other instructional tources for details
beyond the scope of this report.

I

Brief Overview of Regression Analysis

Understanding some basic ideas of regression analysis, if not the
how-to-do-it details, can begin with the equation for a straight line.
A straight line can be defined as the connection between two points.
If these two points are places on a map drawn with perpendicular coor-
dinates -- north-south and east-west -- the line from P to Q can be
defined by the coordinates of one of the goints and the compass direc-
tion from that point to the other point. If this familiar idea is
sketched on paper, with a vertical axis (y) and &horizontal axis (4,

. .a picture like the solid-line portions of Figure C-1 might be drawn.

Now, instead of using Point P.,a's part of the definition of the
straight line connecting P and Q, that *line could be extended to cross
the Y axis, thus defining an intercept point on the Y axis., The slope
of the line (rate of change in the Y-direction relative to the rate of
change in the Xudirection) is analogous to :ompass direction. And
there we have it -- the equation for a straight line:
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1

43.4.

Y = a +

where: a = intercept constant
b = slope
,

If Y is reldted to X without error, then once we know X; we also
know Y. For example, Fahrenheit temperature is an exact straight-line'
function of tempgrature fn Celsius, and this, relationship can be
expressed in the form of a straight-line equation:

F = 32 + 1.8C

If thtrline were graphed, 32 would define the interCept on the F-axis
and IA would define the slope of the line (j.e., for every unit change
in C there is a 1.8 chan-ge in

..

Y2

Y1

777

-
Slope (b

X1 - X2

7 II
H

Intercept a ,

I I
I

Y'r. a + bX

4.

X1 p X2
x.

HA-423582-11

FIGURE C-1 REGRESSION EQUATION AS A STRAIGHT-LINE
DEFINED BY Y-AXIS INTERCEPT AND SLOPE
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regressioil equation'inVolving two variables (such as time to
. cri. e'rion and cniterion scoie) takes-the same form as the equation for

a stri\tght line. Thus: "

s

4 re'

Y.' f. a + bX
4

where: = prediCted scoye fbr dependent variable ,
a e= intercept constant
b- = regression.coeffkient or weight
X = score of an independent (predictor) variable

, *". Y. (or Y.') is called the dependent variable becaUse it is assumed that
.it varies "depending" on the value of X (the independent or predictor.' eIriable). a . . .

.1

4.

The line defined by Y.' = a + bX ts thlt one which best fitva set
of paired X and Y. values. lbe "best fit" is.defined by the.line that
minimizes the sum of the squares of the differences between the values
of Y and the values predicted by the regressicm equAtion. Thus, the
interceft constant (a),and the slope -(b) are called "least squares"
estimo es.

3

The idea of' the least squares best fit line is illustrated in
Figure C-2. .Figure C-2 is a graph pr "scattergram" of 12 paired 'scores.
of X and Y. values. (For example, X might be test scores at Tilde 1 and
Y. might be test scorei at Time 2 for a class of 12 trainees.) It is
evident to the. eye'that X 'and Y. tend to vary together; in geheral,-a

low scOre on X means a low score' on Y. and a high score,on X means a

high score on V. The ,statistic that expresses the relationship between

X and Y. is called a correlation coefficient, conventionally symbolized
as r. Ins this case, r = .86.

1.4
Cori-elation coefficients can range in.absólute value from .00 to

1.00, or from no relatiohship to perfect relationship. The sign of r
(+ or -) denotes the direction of relationship. A positive sign means'
that high tends to go with high and low %yith low, whereas a negative
sign means that high tends to go with lOw arid low with high.

.
.

, 'The iegression equation shown in Figure C-2 ,(Y' = 1.447 + .909X)
is a precite expression (within rounding error) of the regression line
that best fits tire saatter of points. Notice that the line in this
example ctoe's not lfterally pass through' any of the 12 points that
compriseorthe scatter even though the line is the analytical "best
fit." -The/difference between an estimated Value of "Y.Idenoted Y.') and
an actual value of Y. for values of X is an err6r of estimate. (These ,..

differences, or erors, dre oftenicalled "residuals" in regression
analysis.) .

I .

'
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0 1 2 4.5678910
X ~

liA-423582-12

FIGURE C-2 'REGRESS141:INE FOR SCATTER OF: 12 POINTS
DEFINEb BY\ X AND Y VALUES

The average of'the squared errors' fs the variance of the error
distribution; in regression anabisis, this term usually is caLle0 the
"mean squa're error." The square root of the mean square error is the
standard deviation of the distribution of differences between actual
and predicted Y-values. This standard devfation js called standard
error of estimate. It also is a key term involved'in defining some
,othur terms: (1)- standard (ieviation of b, the regression coefficient,
t2) sample standard deviatIon.of estimated Y as an estimate of popu-
lation mean; and (3) sample.standard deviation of estimated Y a's an.
estimate olf a new point Y.

Table C-1 converts the information from Figure C-2 to numbers.
The third colimin of Table'C-1 shows the values of Y estimated for

, various values of X from the regression equatior6 These points fall on
the line shown in Figure C-2. The fourth column shows the errors of
estfmate or the differences between actual and estimated values of Y.
Summary statisticsat the bottom of Table C-1 include the terms neces-

-.. sary to separae miability in the dependent variable, Y, into two
parts: that vhriability accounted for by the regression line, and that
variability which is unexplained (the sum of the squared'errors or
reiduals). Note that ;hese two parts add to the total varjability.

In the bottom portion of Table C-1, the entries'are referred to as
sums of,"squared.deviations." Deviation refers to the difference
between a given store in a distribution and the mean of that whole '

distributibn of scores. It is conVentional to denote a raw score 'in a

"W.
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Table C-1

NUMERICAL VALUES,TO SUPPLEMENT FIGURE C=2

Case
Actual Scores PredicteA,Y

Scores (V)

Error

Scores

(Y - Y')X Y

01 1 2 2.356 -.356
02 2 2 3.265 -1.265
03 2 3 3.265 -.265
04 3 4 4.174 -.174
05 3 5 4.174 .826
06 4 5 5.083 -.083
07 4 6 5.083 .917
08 4 7 5.083 1.917
09 5 7 5.992 .1.008
10 6 5 6.902 -1.902
11 6 6 6.902 -.902

. 12 >..1 9 8.220 ,

)

.280

Sum of Scores 48 61 61.000 0.000

Sum of Squared :tores 236 359 346.447 12.553

Sum of Cross products (XY) (284)
,.0.,

Mean of Scores 4.000 5.083 5.083 0.000

Standard Deviat'ion ,

of Scores 1.915 2.019 1.741 1.023

.

deviations = 346:447 - 61.0002/12

dbviations = 12.553 - 0.0002/12

= 36.364

= 12.553

Regression (explained) sum of squared

Error (uneXplained) sum of squared

Total sum of squared deviations = 359 61
2
/12 48.917

(12 v284) - (48 x 61)
Correlation between X'and Y rxy .8622

v/12 x 236 - 482 112 x 359 - 612

Explained variation / Total variation = R
2
= 36.364 / 48.917 . .7434

r
2

Y
R
2

.8622
2

, .7434
X

Note: Values rounded following computations
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distribution by a capital letter, such as X. (Both X and Y are used in
Table C-1 to distinguish two variables.) The symbol, R (read as
"X-bar"), is commonly used to denote°the Mean of the distribution of
X-scores. A. deviation score, then,"is defined as (X - X) and symbolized
by,the lower caseA x. The phrap, "sum of squared deviations," could be
smbolized as 5:x4 or as :E(X-R)4, where "I:" means "add all terms."

The sum of squares of deviation scores (or "sum of squared devta-
,tions") in Table C-1 can be shown with simple algebra.to have the
following identity with raw scores:

Ex
2
= EX

2 (EX)
2

Raw score values are shown in the computations at the bottom of Table
C-1.

The term, I:x2, denotes the sum of Squared deviations of scores
about the pan or,jbroadly, the variability in the distri6ution. As
noted earTier, the mean of.that term -- Ex2/N -- is commonly caTtled
the "meah square." It also may be called "variance."* The square
root of the variance is the standard deviation of the distribution.
Note in Table C-1 that the standard deviation of raw Y-scores = 2.019.
This is the square root of the whole term, 48.917 (the "total sum of
squared deviations") divided by 12 (the N or number of cases); i.e.,
2.019 = 1/48.917/12.

Based on the raw scores Vat comprise score distributions, the
terms needed in most commonly used statistical calculations are (a) the
number of cases, (b) the sums df scores in each single distribution,
(c) the sums of squared scores in each single distribution, and (d) the
sums of cross-products in each distribution of paired scores. Appendix
E of this report contains a selected collection of commonly encountered
statistical formulas.

A procedure for partitioning variance into additive parts is shown
at the bottom of Table C-1. Also shown is the meaning of correlation

, in terms of the ratio of explaided variation to total variation. Com-
putations of the slope and intercept in the regression equation are
described below.

Recall that the basic form of the regression equation is Y' = a +
bX, where Y' = estimated Y-variable score, a intercept, b = slope,
and X = any X-variable score. The slope may be computed directly from

* -

This report bypasses the problem of specifying appropriate divisors
for various mean squares. This is not to belittle its importance but
to note that the general problem has too many specific answers to be
treated here..
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a combination of the basic sums. It is handier to compute the slope
term (the regression coefficient) before computing the intercept, so
that one can use the obtained slope term in the intercept computation.

(1) Slope b

(2) Intercept

Using equation
computed as foll-ows:

EXY - EX 22Y/N
Equations for

EX? - (22X)2/N bivariate case
only

= a = EY/N - bEX/N

.(1 ), the slope term for the data in Table C-1 is

- .90909 = .909
--284

236 - (482/1 2)

//

Using equation (2), the intercept term for the data'in Table C-1

6ecOmes:

a = 61/12.- [(b)48/12] = 1.446969... 1.447

Thu-s, the completed equation for estimating the regression of Y on

-X is as shown in Figure 6-2:

Y' = 1.447 + .909X

Before the above computalional detour, the meaning of error of
estimate was introduced and illustrated in Table C-1. In Table C-1, we

also showed how total variability (i.e., the "sum of squares" or "sum
of squared deviations") Can be partitioned into a frdction explained by
the regrgssidn and a fractiorf that is unexplained, and that this ratio

R2. The unexplained fraction is Oariously referred to as "error"

or "residuall" The additive property of the sums of squares made up of
explained and unexplained variability leads to need for a term to denote

"error" in the generalized regression equation. In the simple two-

variable form; this equation is usually written as:

Y = a + bX + e

where: Y = value of
X = value of X

a = intercept constant
b . slope or regression coefficient
e = error

The objecipve is to minimize error (i.e., to maximize explanation).
It is precisely this objective that leads to such efforts as sharpening
measurement tolreduce peasurement error, transforming scales to increase
the straight-line nature of relationships between variables, and sifting

predictor variables so that only relevant ones are included.
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As soon as two or more predictor variables are employed in an
effort to explain.variability in a third variable (the dependent
variable),_the regression analysis becomes a multiplerg'eression

,
arialysis.

ftreëñiralmultile regression equation is a logical extension of
the simple form- Multiple regression uses many variables to predict Y.
This can be expressed as follows:

- Y =a+bX +bX + +bX + e
1 1 2 2 k k

in this form, the subscripts (l, 2, ... k) denote different X
variables, each of which has an associated b or regression coefficient.
As before, error is denoted by e. The regression coefficients_-- the b
values -- are weights. Thus, the objective is to find the best-weighted
combination of X values to predict Y.

'Instructors, subject matter experts, and other staff responsible
for the development, conduct, and evaluation of technical training may
encounter two kinds of problems with respect to multiple regression
ahalyses -- interpreting the work of others and planning, conducting,
and interpreting their own analyses. In both cases, knowing something
about the meaning of terms in a regression equation is essential; these
topics are treated briefly below. The more creative enterprise is 40
plan, conduct, and interpret one's own analyses. The closing port:ix'
of Section I of the report offers some prescriptive counsel regarding
"do-it-yourself" regression analyses.

The Scale of Measurement

The discussion to this point has largely assumed that the variables
in the regression equation are in terms of original measurements (i.e.,
test scores, time to complete, etc.). We call these "raw" scores.
Since the results of a regression analysis are not changed by multi-
plying any variable by a constant, or by adding a constant, it is
frequently more convenient to "standardize" the variables so that their
average is zero (by adding a constant) and their standard deviation is
one (by multiplying by a constant). Standard scores are commonly
called z-scores.

When variables are standardized, computer printouts, for example,
often designate the slope as a "beta weight," "b-weight," or "partial
regression coefficient.' Using raw scores, the sloe is often desig-
nated "B-weight,." or simply "B," or "raw score weight."

Comparisons across samples for a single variable probably are best
made using unstandardized, rather than standardized, regression coeffi-
cients since the beta weight is so sensitive to variability in the
distributions. However, the question of relative importance among
several predictors in a regression equation can be approached only when
the coefficients are standardized. It is only when all variables are
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In'ttandard (z-score) terms and the coefficients are expressed as beta
),...4e1glits that the relative impoi-tance of the predictors (in accounting
=' 'for total variance in the dependent_martable).can-be estiiiàtéd. Vari-
...-461-es-withlargertetetiiit§hts, regardless of their sig_ar_s_more----
-important.

.
,

How tr.., r.epresent Categorical Variables in Regression Analysis

When multiple regression analysis is used to annlyze experimental
data -- for example, when one wishes to estimate the effects of alter-
pative treatments on some dependent measure of performance -- then

; independent variables can be .created to provide a way of quantitatively
i *ling subjects according to the treatment they experienced. Further-
more,when one is interested in possible interactions between charac-
teristics of subjects and the treatment they experienced, additional
Variables can be created to represent such interactions.

The following two sections disduss ways to deal with these two
' issues: (1) using categorical or nominal variables (e.g., sex or
treatment group) along with continuous variables (e.g., test scores or
performance ratings) in regression analysis, and (2) creating variables
to represent interactions between treatments and personal characteris-

. tics or aptitudes.

Coding Categorical Variables

When a multiple regression approach is used to assess the effects
,of alternative instructional treatments on performance, the analyses
.must accommodate both categorical or nominal variables (e.g., instruc-
tional treatment, sex, race) -and continuous variables (e.g., years of
service, measures of prior performance, aptitude test scores, interest
inventory scores).

Categorical variables, such as type of instructional treatment,
=.can be used in a multiple regression analysis by representing them o

'through what are called "dummy variables." A (Junky variable is created
..by treating each category of a variable as separate. For example, one
-*ay wish to use "prior course experience" as one of the predictor
variables in the evaluation of an entirely new course. Imagine that
assignment to the new course is made from among persons who have previ-
ously completed any one-of existing courses A, B, C, or D. The evalua-
tion question concerns which prior course experience is the best
zpredictor of performance in the new course. Dummy variables D1, D2,
:and D3 would be created to represent prior course experience as shown
In Table C-2.
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Table C-2

DUMMY VARIABLE SCORES FOR THE CATEGORICAL VARIABLE,
"PRIOR COURSE EXPERIENCE"

Prior Dummy Variables

Course 02 03

A 1 0 0

0' 1 0

0 0 .1

0 0 0

Note in Table C-2 that the number of dummy variables needed is one
less than the number of categories to be represented. As shown in

Table C-2, "prior course 0" is fully determined by the other three
categories (i.e., zero on all three variables). In this example,

"prior course D" becomes the "reference categony." it is not excluded

from the analysis; rather, it is the reference value against which the

other variables are coRtrasted.

Dummy variables also can be created to represent the experimental

variable of "instructional treatment." An approach exactly analogous

to Table C-2 could be used if there were three or more instructional

approaches to be contrasted. Again, the guiding rule is that when a

categorical variable has C categories, use one less than C dummy vari-

ables to represent it. Thus, with three alternative treatments to

contrast, two dummy variables would be needed and the third treatment

would be the reference category.

Creating Variables to Represent Interactions

In analysis of variance (ANOVA) with two or more independent vari-

ables (as illustrated in the body of the report in Figure 5 and accom-

panying text), the analysis produces terms that represent interactions

between the combinations of the independent variables. For example, in

a two-way design such as shown in Figure 5, the independent variables

were Treatment (X1, Idith levels A and B) and AFSC (X2 with levels 1 and

2). The ANOVA produces estimates of variance, of X2 variance, and

of variance due to interaction between X1 and X2, or X1X2. Simply

stated, an interaction between two independent variables implies that

lines connecting cell means, when plotted as in Figure 5, are not

parallel.

With three independent variables (e.g., Q, R, 5), ANOVA would

yield.(1) three main effect estimates, Q, R, and S, (2) three two-way

interactions, QR, QS, and RS, and (3) one three-way interaction, QRS.
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By analogy, the number.of interaction terms can be seen to expand with
the inclusion of each additional independent variable.

In multiple regression analysis, the analyst is seeking a regres-
sion equation that minimizep the error of estimate. If interaction is
either suspected or expected, variables to,represent the interaction
must be created and included in theanalysis. Symbolically, an inter-
action term for two independent variables would be shown as follows:

a + b
1
X
1
'+ b2X2 + b3X1 X2

In the above expression, X1X2 is the product of variables Xi and X2 and b3
is the regression coefficient associateewith that created, interaction
variable.

In instructional treatment experimentation, it is customary to
create interaction variablei involving treatment (the experimental
independent variable) and one or more of the individual differences
variables or "aptitudes" descriptive of persons in the experiment.

Table C-3 illustrates procedures for creating antitude-treatment
interaction variables with dummy coding variables.

CREATING APTITUDE-TREATMENT INTERACTION VARIABLES
(Hypothetical Data)

Treatment DeOehaent Aptitude
Group Var. V- Var. X

2

8 6',

9 7

7 8

6 9 '

Dummy Coding
Aptitude

Treatment
Treatment

Code X1

Interaction

,

X1 X2

1 6

1 7

1 8

1 9

0 0

0 0

0 0

0. 0

Sources for Mbre Detailed Guidance

Computational procAures for multii.le regression analyses involv-
ing several variables are sufficiently complicated to make it impos-
sible to address them responsibly in this report. Packaged programs



- for computerized solutions are widely available (see, for example,
, Reference 13,'Statistical Packaae for the Social Sciences (SPSS) or

Reference 8, BMOP Biomedical Computer Programs).

The following references contain computational examples:
Kerlinger & Pedhazur (1973), McNemar (1969), Nunnally (1967), Snedecor
& Cochran (1980). The Kerlinger and Pedhazuig volume contains several
step-by-step illustrations.
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Appendix D

ANALYSIS OF TRAINEE CHARACTERISTICS ANL) PERFORMANCE DURING
INSTRUCTION ASA BASIS FOR DEVELOPING ALTERNATIVE INSTRUCTIONAL

TREATMENTS FOR SUBSEQUENT EXPERIMENTATION
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ANALYSIS OF TRAINEE CHARACTERISTICS AND PERFORMANCE DURING
INSTRUCTION AS A pAsIs FOR DEVELOPING ALTERNATIVE INSTRUCTIONAL

TREATMENTS FOR SUBSEQUENT EXPERIMENTATION

Introduction

This appendix contains an example of kinds of an1iSses that might
be performed to provide bases for developing alternative instructional
treatments intended to improve the performance of par tular trainees
and.therefore the average performance of all trainees. The analyses
are relevant to each of the first three functions of internal evalua-
tion as pictured in Section III, Figure 9: (1) analyze needs, (2)
specifY objectives and design.approach, and (3) develop approach.

The first part of this appendix discusses the conceptual and
statistical relationships among four measures of trainee performance
during self-paced instruction ino computer-mapaged instructional
environment. Actual data are used in the first part of the appendix;
they were obtained during a study to generate instructional strategies
that held promise of reducing learning time. The first part of the
appendix close§ with some speculations about stylistic differences
among trainees that appeared to influence the way in which they
pern,rmed.

In the second part sa.the appendix, a fictitious data base is
introduced. The data, are similar to those in the real sample; however,

io simplify presentation of some examples, scales have been compressed
and simplified to show how student characteristics might be coMbined
with training performance data to help in conceiving instructional
treatments. At that point, the appendix leads back to Section III of
the report.

Relationshins Among Four Measures of Student Performance DuringTraining

Four measures of student performance are obtained routinely in an
Air Force csmputer-managed instructional setting. The meaning of thes1
measures and their relationship to points in an instructional sequence
are illustrated in Figure D-1%,

1. MTM (first attempt measured time) defines instructlonal
clock-time from the beginning of instruction to the first
attempt of the criterion test,
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,

2. Lk (criterion test score on first attempt) is recorded
following the first attempt.

,

3. LTM,(measured time to criterion) identifiet the total
instructional and test-taking clock-tfme from the beginning
of inttruction until thet5 criterion is satisfied. -

4. NATT (number of attempts to criterion) is a count of.the
number Of times a student takes the criteridn test.

In an analysis',of student performance in a course at the computer-
managed instructiohal site, composite ifidices for each ofthe above '

measures mere constrUdted tp describe the average performance of 1361
trainees through a sequence of three consecutive lessons. Scores on
each measure for each of the three lessons were transformed to standard
scores or z-scores (i.e., each student's score was expressed as the
deviation from the mean score of the group). This transformation put
all icores from the three lessons on a,common.scale, thus adjusting foe
differencet between lessons in tht study time required and the number
of items in 'the criterion'tetts. The resulting standard scores for
each measure from each lesson were then summed and composite scores
across all, three lessons were computed from the combined distributions
of standard scores for each measure. .These composite scores were
labelled K in subsequent analyses -- KMTM, KLSC, KLTM, and KNATT.

-

. Table D-1 shows intercorrelations among these composite-scores as
well as means and standard deviations for each. (Recall that the
composite of individual lesson z-scores created.an abstract scale for
each measure. For example, KMTM scores ranged from a "slow" score of
-5.798 to a "fast" score of .3.937. As shown in Table 0-1, the mean
KMTM score was 0.000 and the standard deviation was 2:223.)

Figurt D-2 shows histograms for the four frequencY distributions.
These 'histograms illustrate .the negative skewness (lack of symmetry) of
each, the most extreme of which is the KNATT measure.

'The data in Table D-1 and Figure D-2 provide one basis.for
identifying stylistic differencet among trainees. Differences among
trainees, in turn, suggest alternatives in instructional approaches
that.invite experimentation and evaluation.

The time relationships among the four performance measures, as
illustrated earlier in Figure D-1, should be kept in Mind when Inter-
preting the correlation coefficients shown in Table D-1.

1. . The LTM and NATT measures constitute completion of a lessdn
or.segment of instructiOn. Either or both are appropriate
dependent variables or outcome measures.

so

1 36 133

D.

te



Table D-1

CORRELATIONS AMONG COMPOSITE PERFORMANCE MEASURES AND
DESCRIPTIVE STATISTICS FOR EACH

Correlations Between Composite Measures

Composite Measure KMTM KLSC KLTM KNATT

KMTM -- .3600 .9267 .2592

KLSC .3600 .5574 .8135

KLTM .9267 .5574 .4803

,KNATT .2592 .8135 .4803 --

Descriptive Statistics KMTM KLSC KLTM KNATT

Median 0.080 0.451 0.071 0.513

Mean 0.000 0.000 0.000 0.000

Standard Deviation 2.223 2.132 2.317 2.072

"Best" Score 3.937 2.941 4.072 1.778

"Worst" Score -5.798 -6.927 -6.198 -8.406

Note: N . 136 for all computations.

All variables scaled in the "desirable" lirection.
Positive signs denote (1) short time to first

.attempt (KMTM), (2) high first attempt sCores
(KLSC), (3) short time to criterion (KLTM), and (4)
few number of attempts to criterion (KNATT).

5
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2. The NATT measure also is an independent, or predictor,
variable with reference to LTM. Time to criterion (LTM)

.depends in part on number of attempts (WATT). It does not
make conceptual sense, however, to view NATT as depending on
total time.

3. The LSC measure is an appropriate predictor of either LTM or
NATT or both. The first attempt score is pivotal in its
influence on the other performance measures. If the first
attempt score satisfies the criterion, then the first attempt
is the only 'attempt; that is, NATT = 1. Also, if LSC satis-
fies the criterion, then MTM = LIM. On the other hand, if
LSC does not satisfy the criterion, then (a) NATT > 1 and (b)
LTM = MTM + (Time for Attempts Beyond the First Attempt).

4. The MTM measure is an appropriate predictorof NATT. The MTM
measure also may be used as a predictor of LTM. The corre-
lation between MTM and,LTM is inflated, however, since MTM is
a component of LTM; that is, LTM = MTM + (Time for Attempts
Beyond the First Attempt). For the majority of the 136
trainees whose performance was summarized in Table D-1, LTM =
MTM on each of the three individual lessons from which the
composite scores were constructed. When performance scores
were combined over three lessons, however, KLTM > KMTM for a
substantial fraction of trainees.

Three complementary correlational analyses help clarify the
pattern of relationships among the composite performance measures as
summarized in Table 0-1. Consider first the relationship *ween theKMTM and KLTM scores. As noted above, KLTM = KMTM + X, where\X = time
for attempts beyond the first one. The correlation between KMTM andKLTM is high (.9267) due to the part-whole relationship between the twomeasures. Also, the extreme skewness in KNATT scores indicates that
most trainees require only one or a very few attempts to satisfy thecriterion. The correlation between KMTM and the additional time, X,
can be computed as -.0868. This indicates that KMTM is essentially
unrelated to the,edditional time beyond KMTM that represents the
differNice between KLTM arm KMTM -- high KMTM is as likely to be
accompanied by low additional time as by high additional time.

Consider next a series of partial correlations involving the four
performance'measures. A partial correlation estimates the relationship
between two variables when the,influence of one or more other variables
has been eliminated or "partialled out." Table 0-2 shows five sets of
partial correlations. In the first three sets, KLTM is the dependent
variable with KNATT, KLSC, and KMTM, in turn, used as the single
predictor variable. In the remaining two sets, KNATT is the dependent
variable with KLSC and KMTM, in turn, treated as the single predictor
variable.

139

136



Table D-2

SIMPLE AND PARTIAL CORRELATION!' AMONG PERFORMANCE MEASURES

Variables Correl ated Zero-order

First-order Partial
Correlation

Second-order Partial
Correlation

-VariablesVariable
Partialled

Out Coefficient
Partialled

Out Coefficient
Dependent Predictor Correlation

c,

LTM MTM .92670 LSC .93732

NATT .9469 7 LSC, NATT .94405

.LTM NATT .48025 MTM .66146

LSC .05548 MTM, LSC .3271 5

LTM LSC .55740 MTM .63820
a

MATT .32682 MTM, NATT .24923

HATT LSC .81 353 MTM .79930

NATT MTM .25916 LSC -.06220

_

I

The middle column of Table 0-2 shows first-order partial corre-lations, or the relationship between the dependent and predictorvariables when one or another third variable is partialled out. Theright-hand column shows second-order partial correlations, obtainedwhen the joint influence of two variables is partialled out.

Several tnferences may be drawn from the partial correlation
analysis, shown in Table 0-2:

.,

1. The spuriously high correlation between KLTM and KMTM is well
illustrated by the sequence of computations in the first rowof Table 0-2. The simple correlation between KLTM and KMTMis .92670. Partialling out KLSC and KNATT, either singly oras a pair, has very litt.e effect on the relationship. Thedominance of KLTM by KMTM, of course, follows from the
definitions of the two variables, as noted earlier.

2. When the effects of KMTM on KLTM are eliminated, the apparent
relationship between KLTM and KNATT and between KL1M and KLSC

,
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are somewhat greater than indicated by the simple correla-

tions. For KLTM vs. KNATT (second row of Table 0-2), the
correlation increases from .48025 to .66146 when KMTM is

partialled out. In the KLTM vs. KLSC relationship (third row

of Table 0-2), the coefficient increases from .55740 to
.63820.

3. KNATT is predicted rather well by KLSC, as the definitions of
the variables would lead one to expect. The simple correla-
tion between KNATT and KLSC is .81353, as shown in the fourth

row of Table D-2. When the effect of KMTM is partialled out,
the relationship is decreased only very slightly to .79930.
The strength of the relationship between KNATT and KLSC also
is demonstrated by (a) the very low correlation between KLTM

and KNATT dhen KLSC is partialled out (.05548 as shown in the

second r / of Table 0-2) and (b) the very low correlation

between KNATT and KMTM when KLSC is partialled out (-.06220

as shown in the fifth eow of Table 0-2).

4. The second-order partial correlations (a) between KLTM and

KNATT with the joint influence of KMTM and KLSC partialled
out (.32715 as shown in the second row of Table D-2) and (b)

between KLTM and KLSC with the joint influence of KMTM and
KNATT partialled out (.24293 as shown in the third row of
Table 0-2) both reinforce the apparent low-moderate relation-
ship between KMTM and KLSC that was shown earlier in the
simple correlation of .36004 (see Table 0-1). There is a

slight tendency for a short time to first attempt to be
associated with a successful first attempt. However, KMTM

does not have much practical use as a predictor of KNATT. As

will be shown below,'a,cross-tabulation of KMTM and KLSC

serves to identify two subgroups that differ stylistically

from one another -- some (who might be characterized as
"gamblers") who achieve criterion after many attempts and
many errors and others (who might be characterized as "sure

bettors") who achieve criterion with fewer attempts but

longer study time than the "gamblers."

A third way to look at the relattonships among the performance
measures is in a multiple correlation sense; that is, the relationship
between a dependent variable (KLTM or KNATT) and a best-weighted

combination of predictors.

As the partial correlation analysis showed, KMTM alone is
virtually interchangeable with KLTM. When KMTM is paired with either

KNATT or KLSC as a predictor of KLTM, essentially identical multiple

correlation coefficients of a:Jout .96 are obtained, thus indicating

that KNATT or KLSC contribute little to explained variance in KLTM

beyond that attributable to KMTM. When KNATT and KLSC are paired as

predictors of KLTM, the obtained coefficient of .5593 is virtually

identical to the coefficient of .5574 that describes the direct

relationship between KLTM and KL5C.
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A similar situation applies to the prediction of KNATT as a

deliendent variable. KNATT is fairly well predicted by KLSC alone

(.81353), and not well predicted by KMTM alone (.25916). Combining

KLSC and KMTM as predictors of KNATT yields a coefficient of .81433 --

in short, KMTM adds nothing to KLSC as a predictor of NATT.

We notedabove that a cross-tabulation of First Attempt Measured

Time (KMTM) and First Attempt Score (KLSC) suggests substantial

stylistic differences among trainees in the manner in which they

approach trials on criterion tests tn the self-paced instruction.

-

The-cross-tabulation between KLSC and KMTM is shown in Figure

D-3. In this form, the plot is called a "scattergram." Plotting the

scatter of paired X and Y-values for each case is a useful way to get a

visual idea of the shape of a distribution that underlies a correlation

coefficient.

Before discussing Figure D-3, it is important to emphasize that

the KMTM scale in the scattergram (the X-axis) runs in a direction

opposite that used in the descriptive statistics reported earlier in

Table 0-1 and shown as a histogram in Figure 0-2. In both Table 0-1'

and Figure 0-2, scores had been scaled to reflect "desirable".direc-

tions.* Since "short time to first attempt" was considered more desir-

able than "long time to first attempt," the scale's in Table D-1 and

Figure 0-2 show "short time" as a positive score and "long time" as a

negative score. In the scattergram shown in Figure 0-3, the conven-

tional 'practice has been followed of showing values as increasing

upward on the vertical (Y-axis) and to the right on the horizontal

(X-axis). This reversal means that the correlation coefficient

computed from Figure 0-3 is -.3600 in contrast to the coefficient of

+.3600 reported in Table 0-1. Also, the median for ZMTM from Figure

0-3 is, -0.080 rather than +0.080 as,reported in Figure 0-2.

Returning to the scattergram in Figure 0-3, the moderately weak

relationship denoted by the correlation coefficient is evident from the

relatively formless scatter of the points (X, Y-pairs). The horizontal

and vertical dashed lines mark the means of both scales; their inter-

section is the arithmetic mean of the combined distributions and since

both means = 0.0, this also is the origin of the two-way plot.

It is common practice, and frequently helpful in interpreting

findings when several variables are being analyzed, to reflect some

scales (multiply by -1) so that the "good" or "desirable" ends of all

scales have the same sign. Reflecting scales does not affect the

strength of a relationship but will reverse the signs of correlation

coefficients so that all "good-to-good and bad-to-bad" associations

carry a positive sign.
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The two solid lines that intersectNat the mean are the two regres-
sion lines. The less-steep line, lahelied Y' -.345 X, is the regres-
sion for Y predicted from X or First Attepipt Score (KLSC) predicted
from First Attempt Measured Time (KMTM). \The equation sAys that, on
the average, for every unit increase in Xthere is a .345 decrease in
Y. The second line, labelled X' = Y is the regression of X on Y
or KMTM on KLSC. This equation says that,\on the average, for every
unit increase in Y, there is a .375 decreaSp in X. (Note that the
average of these two regression coefficients or slopes is equal to the
correlation coefficient of -.360. This holOs because the two means
are zero and both scales are on the same metric.)

Both regression lines were'computed by procedures described in
Appendix C. Both are least-squares best-fi lines. If there had been
no relationship between X and Y (if r 0.0) the regression lines
would haVe corresponded to the two dashed li es -- one would have
predicted, any Y-score using the mean of X, a d any X-score uting the
mean of Y. On the other hand, if the relati nship between X and Y had
been a perfect negative one (if r = t e two regression lines
would have coincided and extended downward f om the upper left through
the mean to the lower right.

r".
The fact that the relationship between cores on the first attempt

(KLSC) and time to the first attempt (KMTM) is quite lcu suggests
stylistic differences within this sample of 136 trainees. Certainly
there is a cluster of trainees denoted by points in the lower-left
quadrant of Figure 0-3 who were relatively quick to attempt the test
but also relatively unsuccessful in their first attempt. By contrast,
trainees identified hy points in the upper-ri ht quadrant took rela-
tively long times before attempting the test ut generally performed

. . well when they did attempt it.

These contrasting patterns suggest at le st two sets of questions
nt experiments:as candidates for guiaing instructionaT trea

What can be done to stimulate quicke responses from the slow
but accurate types represented in th upper-right quadrant of
Figure 0-3? Is there something in t eir experience back-
grounds that discourages risk-taking If so, what changes in
the instructional approach would be likely to speed them up
without jeopardizing seriously their Fhances of doing well on
the test?

1

2. What can be done to stimulate more d iberation from the fast
but inaccurate types represented in t e lower-left quadrant
of Figure D-3? Why do they seem so w lling to guess, as some
must have done? Are they unable to e aluate their own read-
iness for the test, or are they usingj feedback from the test
results as constructive guidance? Wh changes in the
instructional approach would help then make better evalua-
tions of their chances of passing th est without exces-
sively reducing their willingness to.t st themselves?
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Trainees represented by points in the lower-right quadrant of
Figure 0-3 present instructional problems, too. Here are trainees who
are both relatively slow and inaccurate. Are they beyond their depth
in the instruction? Are there shortcomings in their backgrounds, such
as slow reading speed or problems in rea-ding comprehension, with which
they should be helped before they begin new instruction? Are the
criterion tests adequate that brought them to this stage of training?
Is it .possible that faulty measurement at an earlier point suggested
readiness before it was justified?

Identiqing the Relative Importance of Various Predictors in Accounting
for Variability on a Criterion Measure

From this point on, the data used in the illustration are ficti-
tious. To sustain.continuity with the preceding discussion, assume
that the purpose is to look more closely at variables or factors that
affect a criterion measure, "time to criterion." The purposes follow
from the speculative discussion in the preceding paragraphs. In the
following example, the purpose is to investigate how instructional
efforts might be modified to reduce "time/to criterion."

Table D-3 shows the full array of data used in the following
exercise. Three of the variables are familiar from the preceding
discussion: (a) time to criterion (LTM) which will be the criterion or
dependent vatiable, (b) first attempt score (LSC), and (c) number
attempts to criterion (NATT). Two hypothetical variables have been
added to the array: (a) a "basic skills" factor which might represent
measures such as reading comprehension, reading vocabulary, abstract
reasoning, or prior learning experiences, and (b) an "anxiety" factor
derived from a self-report paper-and-pencil measure. The two factors
are not independent of one another; the correlation between them is
negative and low-moderate in strength.

To simplify the presentation and make it easier to reproduce the
computations, all five of the variables have been represented on three-
point scales -- 0, 1, 2. In keeping with common sense equivalences,
110" means "low," "few," or "short" and "2" means "htgh," "Many," or
"long." Thus, we will discover that some "desirable" relationships are
negative in sign. For example, few attempts to criterion (NATT) is
"good" and a high score on the first test aqempt (LSC) is "good;" as
is apparent to the eye, the relationship between NATT and LSC shown at
the far right in the <bottom row of Table U-3 will be negative.

Table D-4 provides the descriptive statistics that go with Table
D-3. In the top half of Tablle D-4, correlations between all pairs of
variables are shown. The right-hand column shows the correlations
between each predictor and the criterion. The next objective is to
estimate the degree of improvement possible in che prediction of LTM
provided by the Basic Skills factor alone Cr = -.63(7) if use also is
made of the other three predictor variables. rhe square of -.6367 is
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Table D-3

FREQUENCY CROSS-TABULATIONS OF HYPOTHETICAL TRAINEES ACCORDING

, TO SELECTED APTITUDE AND TRAINING PERFORMANCE MEASURES

_

Time to Criterion

Levels
Wi thi n Short Long

,

Variabl e Variabl e 0 1 2

Hi gh 2 28 12 2 Basic Ski 1 1 s

Basic Factor

Skills 1 10 30 7 .

Factor Low High

.

Low 0 5 7 35 0 1 2

High 2 10 19 21 26 17 7 Anxiety Factor

Anxieklf

Factor 1 15 1 8 13 14 20 1 2 Low Hi gh

Low 0 18 12 10 7 10 23 0 1 2

Hi gh 2 25 22 3 7 16 27 20 15 15 1st attempt

1 st
Score

Attempt
Score

1 12 11 23 8 26 1 2 14 1 6 16
Low High

Low 0 6 16 18 32. 5 3 6 15 19 0 1 2 Total

Many -2 4 8 18 20 9 1 3 9 18 23 7 0 30

Number
.

Attempts
to

1 12 19 23 20 23 11 8 ..i 28 15 32 7- 54

Cri teri on Few 0 27 22 3 7 1 5 30 29 19 4 2 7 43 52

Total 43 49 44 47 47 42 40 46 50 4:1 46 50 136

Mote: Variable means, variances, and intercorrelations
computed from frequencies as shown in 3 x 3

tabulations. See Table D-4 for summary statistics. See text for explanation of example.
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,4054 which indicates that the Basic -Skills factor alone accounts forsome 40% of the variability in the
criterion measure, LTM.

Table D-4

DESCRIPTIVE STATISTICS FOR FREQUENCY CROSS-TABULATIONS
SHOWN INJABLE 0-3

Variable.

.

Correlation Between Selected Vaniables (N-"=.136)
Basic 1st Attempt
Skills Anxiety. Score

go. Attempts
to Criterion

Timet,
Criteit

Basic Skills ...... -.3890 .5544 -.5129 -.6367
Anxiety

-.2099 .4974 .2148
1st AttemOt

.... -.7455 -.3867
Number Attempts

........ .4620
Time to
Criterion

Means and Standard Deviations for Variables (N = 136)
Basic 1st Attempt No. Attempts Ttme toStatistic Skills Anxiety Score to Criterion Criterio

Mean .9632 1.0735 1.0735 .8382 1.0074
Standard Deviation .8111 .8132 .8132 .7623 .8027(N-1 wtd.)

Note: All variables re-scored to a three-valued scale (0, 1,.2). See TableD-3 for corespondence between adjective scores (e.g., high, short,
many) and numerical values.

The next step is to determine the multiple regression equation for
estimating LTA using all the predictors (Basic Skills Factor, AnxietyFactor, LSC, anti NATT). Some of the discussion below nay be helped by
referring to Appendix C.

Table D-5 summarizes the results of the multiple regressionanalysis. The full regression equation may be written as:

Y' = 1.2244 - .6169X1 - .1734X2 + .2073X3 + .4067X4

rhere Y Predicted Value`of Time to Criterion (LTM)
X = Basic Skills Factor
1

X
2

Anxiety% Factor

X
3 . 1st Attempt Score (LSC)

X
4

= Number Attempts (NATT)
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Thp nhtAinafi R2 of :4554 is somewhat greater than .4054 or the
square of the simple correlation between Basic Skills and LTM; the
other predictors have added about 5% to the variability accounted for
in LTM. 7

Table D-5

SUMMARY.OF MULTIPLE REGRESSION ANALYSIS OF FICTITIOUS
DATA SHOWN IN TABLES D-3 and D-4 FOR DEPENDENT

VARIABLE OF "MEASURED TIME TO CRITERION"

Parameter
-Variable Estimates

Standardized
Coefficients

Intercept 1.2244 ( .0000

Basic skills factor (X1) -.6169 -.6234

Anxiety factor (X2) -.1734 -.1757

1st attempt score (X3) .2073 .2100

Number of attempts

to,criterion (X4)
.4067 .3862

Square of multiple coefficient .4564

Standard error of estimate .5919

The step of significance testing of the separate regression
coefficients will be skipped oh the grounds that we are only "data
snooping." It is apparent from the standardized coefficients shown in
Tab e D-5 that the Basic Skills factor is the most potent of the
pr dictors in this Kypothetical example.

Some ideas for instructional treatment design may be drawn from an
analysis such.as this (remembering, of course, that all the data are
fictitious): 0

1. We discovered that the Anxiety Factor operates in a somewhat
unanticipated fashion. From the correlations shown in Table
D-4, we might have expected the Anxiety Factor to work
against LIM. The regression coefficient, however, suggests
that some anxiety may be a good thing. If various combine-
tions of Basic Skills values and Anxiety values are substi-
tuted in the regression equation and LSC and NATT are held

. constant at their mean values, an increase in the Anxiety
factor leads to lower LTM values at every level of the Basic
Skills factor. The Anxiety effects are not nearly so great
as the Basic Skills effects, but they do run in a direction
that suggests that more, rather than less, anxiety is predic-
tive of lower LTM scores. Could this be interpreted to mean
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that generating a little,anxiety among the slow-but-accurate
teainees would be helpful in reducing time te criterfon for
theni? How might this be done? Should some moderate anxiety ,..:

be generated by imposing some time constraints on self-
pacing, especially for trainees with high Basic SkilW

2. The :..SC variable also does not operate as anticipated. Its

regression weight is positive in sign which is contrary to
the sign of its simple correlation toefficient. This indi-
cates that a high first attempt score, other things being
equal, appears to be associated with longer, rather than
shorter,.time to criterion. This is a reflection of.the
"sure bettor" phenomenon, described earlier. It suggests
that training time might be eeduced by encouraging this group
to test somewhat earlier.

3. The potency of the Basic Skills Factor is affirmed by the
regression analysis. What implications can we derive from
this? For example, it may suggest that more practice -- even
remedial instruction outside the mainstream of the ir&ruc-
tional course -- should be provided for incoming trainees who
.show deficiencies in aptitudes underlying the Basic Skills
Factor.

t4,

0

146

14j



4

Appendix E

COMMONLY ENCOUNTERED STATI$TICAL CONCEPTS
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,fippendix E

COMMONLY ENC UNTERED STATISTICAL CONCEPTS

The symbols and notation in this selecrve compendium ane not universal but ref ec: t notation used

in this report. See the reference list in the report for several'widely used textboOks and -reference

works in statistical methods and test theory for further detail and explanation.

. Staiistic

Raw score of indi-

vidual i on variable

X

Number of individuals

in sample/

Symbol

X.

Sum of U values X.

beginning with i = 1
EXi

and ending withi = N. i=1

151

Formula

X
1

+X
2
+ +X

N

Comment

Paired scores usually symbolized by X

(independent variable) and Y (dependent

variable). Therefore, Yi = raw score

of individual i on variable Y.

Raw scores. Subscripts and superscripts

often omitted when meaning is clear;

thus,

EX = X +X + ..+X
.1 2 N

J. 5 2
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Mean

Statistic Symbol

Deviation score

Sum of squares of

deviations from the

mean

Variance of speci-

fied sample

Unbiased estimate of

variance in popula-

tion (universe)' from

which sample is drawn

Standard deviation of

specified sample

Formula Comment

S
2

S
2

s
2

s
2

x. -

Ex2-[(Ex)2/Nj

Ex
2
/N

(EX2/N)-Y2

Ex
2
/N-1

EX2-[(EX)2/N]
N-1

Often written as EX/N when rules of

summation are obvious.

Sum of deviation scores = 0; Ex = O.

rquivalent formula:
2

Ex
2

= EX
2
- NX

Reminder! EX
2

# (EX)
2

Deviation score form

Raw score form

Deviation score form

Raw score form. Note also that

s
2

= 52 (N/N-1)

Exponential notation sometimes used

instead of radical sign. iii general,

ni--
I A = (A)1/n
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Statistic Syrilbol Formula Comment

Unbiased estimate of
s2

Also may be written as:

standard deviation s = (52 )
1/2

in population from

which sample is drawn

Standardized score z (Xi - TO/Sx Distribution of z-scores will have

(z-score, deviation 7
.z

o, s
z
. 1.

score)

Score of individual

i on item g

A
ig Conventional it61 scoring:

1 = correct, 0 = incorrect.
\

Proportion answering

item g correctly EAig

1=1

Proportion answering 1 - p

item g incorrectly

Variance of item g S
2

P
g g

15-3

Number of correct answers divided by

total of correct and incorrect answers.

Often called "item difficulty."

p + q = 1.0

Equivalent formula:

S
2

= p - p
2

9 9 9
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15'2

Statistic Symbol Formula
Comment

-Sum of N products of N X
1
V
1
+X

2
V
2
+ ..+X

N
Y
N Raw scores. Often expressed simply aspaired scores, Xi EXeli

EXY. Commonly called "sum of cross-i=1and Y
i

products."

Pearson product- r Exy
Definition formula in deviation score

xy
N s smoment correlation

x y terms. Pearson r sometimes called "PM' .coefficient
correlation." Alsoilay be referred to

as "simple correlation" or "zero-order

correlation."
..,

run
XY NEXY - EXEY

Computation formula in raw score terms.

Oa

/NEX2-(Ex)2 /NEY2-(Ey)2 Alternate formula if S
X

and S
Y

known:

NEXY - EXEY

N
2

S S
X y

\
Slope of regression

of Y on X

b

(in V' =
r XY(sY/sX)

a 4 bX)

b

(in Y' =

EXY-[EX(EY/N)]

EX2- [(EX)2/N]a + bX)

Easiest formula if r
XY

s
Y'

and s
X

known.

Raw score form.

1



Statistic Symbol Formula Comment

Intercept of regres- a )7 -(bX
'

7 ) Easiest formula if b, 7 and 3(-- known.y
X Ysion of Y on X (in Y' =

a + bX)

a EY01- [b(EX/N)] Raw score form; uses slope term, b.
N

(in Y' =

a + bX)

15'3
16 ii


